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Abstract: The mechanical design of a system component requires to consider several aspects which include the 
static, dynamic and thermal stresses, the order in which stresses follow each other over time, as in the case of 
material fatigue which generally does not adhere to the principle of superimposition of effects and, last but not least, 
the random features of the resistance of materials. Accordingly, well-known mathematical models and methodologies 
are used in the industrial practice. Conversely the knowledge of these phenomena is not exploited for the lifecycle 
evaluation of the operating status and residual life (for reliability and prognostic purposes) and, according to the 
most recent perspectives, the identification of cause-effect relationships based on the analysis of operating data (data 
driven), relying more and more often on the development of some kind of artificial intelligence, is preferred. 
Industrial plants, however, are made up of a considerable number of components which, despite being relevant for 
continuity of operations, are not equipped with such kind of technology that allows a continuous control due to their 
multiplicity and cheapness; as a result, the acquisition of that set of data which may be useful for the development of 
an artificial intelligence to improve maintenance and operations management appears very unlikely. This paper takes 
as use case of industrial component the electric motor to propose a model suitable for homogeneous classes of 
mechanical components, capable of evaluating the operating status of the environment-system control volume and 
therefore predicting the remaining useful life of a device when operating, environmental and performance conditions 
change continuously. 
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1.Introduction 
Production continuity of line of an industrial factory 
depends on several factors. Among them, the 
availability of the components constituting the 
production equipment is one of the most critical and 
important. 
The availability of a system is the probability that it 
will operate satisfactorily over a given time horizon 
when used under stated conditions in an ideal support 
environment (Duarte, Craveiro and Trigo, 2016). The 
definition of availability includes corrective 
maintenance downtime and excludes those types of 
events which can be managed or included in the 
planning of the activities, like logistics time, waiting or 
administrative downtime, and preventive maintenance 
downtime (ISO/TR 12489:2013). 
The availability of a system is analyzed during the 
conception and before the start-up of a system, in 
combination with the process specifications, in order 
to determine the main key-performance indicators that 
a system has to meet to fulfil the process 
requirements. It is also used as an input of the system 
design in order to identify criticalities and bottlenecks 
that can be caught and solved during the conception 
phase. 
Traditional formalisms for the assessment of the 
system availability (Chiacchio, Iacono, D’Urso and 
Compagno, 2020) are based on mathematical and or 
simulation methodologies (Codetta-Raiteri and 

Portinale, 2014). The system and its processes are 
modelled and then solved according to the type of 
methodology adopted (Kabir, Yazdi, Aizpurua and 
Papadopoulos, 2018). As it can be understood, the 
output of these methodologies is able to provide a 
nominal indication on how the system would perform 
during its lifecycle; nevertheless, this indication is 
theoretical and may not reflect the real status of a 
system which, during its operations, is subjected to 
workload changes, or abnormal working conditions, 
that could not have been considered during the design 
phase. 
Maintenance is defined as the combination of all 
technical and associated administrative actions 
intended to retain an item at/or restore it to a state in 
which it can perform its required function (ISO/TR 
12489:2013). It is an important management activity 
because it can help to reduce downtimes and thus 
increase the availability of the system. It is possible to 
identity two main categories of maintenance: 
corrective maintenance operated as soon a failure has 
occurred and preventive maintenance which is 
performed according to different possible policies 
(testing, inspection, condition monitoring, periodic) to 
avoid a fault of the system. 
One of the main limitations of these methodologies is 
that the models of the systems, the processes and the 
components interdependencies cannot be too 
complex. General track records of the components’ 
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behaviors are often missing or have to be adapted 
from other use cases. In particular, this type of issue is 
very common for dated industrial plants and for the 
cheap components of an industrial machine that are 
not equipped with modern IOT sensors (Wu, Liu, 
Zhang, Terpenny, Gao, Kurfess and Guzzo, 2017). 
Among the latter interdependencies it is necessary to 
highlight those that link production management and 
maintenance and how the results of the scheduling of 
operations can change according to the strategy used 
to guarantee a certain level of plant availability. 
In the following, therefore, we will try to verify what 
are the results of the application of different 
scheduling rules while taking into account the 
contribution of the maintenance strategy adopted. The 
average cost of production and the production time 
required to process a production mix, over a defined 
time interval and taking into account how the 
variations in the characteristics of the processes affect 
the availability of the equipment used, is being studied. 
The paper is organized as follows: section 2 presents 
the basic concepts of the problem addressed in this 
research. Section 3 describes the methodology and the 
mathematical tools which will be used in the 
experimental campaign, whose findings are discussed 
in section 4. In section 5 conclusions are drawn. 
 
2.Problem statement 
We analyze the medium-term planning of a 
production scenario involving a single failure prone 
machine; the failure mode analysis focuses only on the 
bearing system. The following factors may affect the 
performance of the manufacturing system under the 
reliability viewpoint: (i) the angular speed at which 
processing takes place; (ii) dynamic load transmitted to 
the bearings. Since the different parts to be processed 
require a different angular speed and exert a variable 
load on the bearings, the way jobs are scheduled may 
bias the failure mode of the manufacturing system and 
a series of turnaround measures as well (Baker and 
Trietsch, 2013) The characteristics of each job will be 
simulated by sampling them starting from a 
cumulative probability density functions associated 
with each fundamental characteristic mentioned 
above. The problem being analyzed therefore lies in 
the production scheduling related topic and makes use 
of makespan, total flowtime and average cost 
(involving production and maintenance cost) as key 
performance indicators. The nature of failures is 
linked to the aging of machine tool bearings; 
consequently, the maintenance strategy is preventive 
and characterized by a preventive maintenance period 
Tp, by unit costs of preventive and corrective 
maintenance. 
 
3.Methodology 
The production scenario just defined presents results 
that depend on the way in which the jobs are 
scheduled, on their technological characteristics and 
on the preventive maintenance period Tp that is 
chosen. The optimization of the problem just defined, 
even if the technological characteristics of the jobs to 

be produced are considered constant, requires the 
integration of the Weibull function which describes 
the probability density of failure of the bearings of 
machine tools. This integration is not easy; therefore, 
the solution of the problem will be searched by 
simulation of Monte Carlo (Wang, Zhang, Huang, 
Mourelatos, 2014). In the following it is therefore 
described how the modeling of the failure rate of 
machine tools and the scheduling of the production 
scenario is carried out. 
 
3.1 Reliability modeling 
Bearings have failure probability density which can be 
represented by a Weibull function; the failure rate 
(Kim, Kim, and Heo, G. 2018). Failure rate updates 
using condition-based prognostics in probabilistic 
safety assessments. Reliability Engineering & System 
Safety, 175, 225-233. and the cumulative probability 
that the bearing will fail before a certain time t, can be 
written as follows: 
 

h(t)=(/)·(t/)-1.     (1) 

F(t)=1-e-(t/)      (2) 
 

where  is defined as expected or characteristic life 

and  is the shape factor.  
As shown in (D’Urso, Chiacchio, Borrometi, Costa, 
Compagno, 2021) the experimental data published by 
SKF, allow to calculate the expected life, with 
cumulative probability of at least 90%, of a bearing of 
given dimensions, when subjected to known and 
constant stress conditions, in operating conditions of 

temperature To, and lubricant viscosity (To) still 
known and constant. We define, L10,h as the expected 
bearing life with a cumulated probability of 90% (h).  
 
L10,h=ao·n-1·(C/P)p·106    (3) 
where: 
n is the bearing angular speed (rpm); 
C is the basic dynamic load rating (N); it depends on 
bearing type, geometry and lubrication; 
 
P is the equivalent dynamic bearing load (N); 
 
a(T) is a correction coefficient that takes into account 
the variation of the operating temperature with respect 
to a reference value equal to 20 °C; 
 
p is the exponent for the life equation (p=3 for ball 
bearings).  
 

By combining equation (2) and (3) and setting p = , it 
is possible to calculate the expected life of the bearing 
as a function of the operating conditions (angular 
speed n, operating temperature T, viscosity of the 

lubricant , stresses P, mechanical resistance of the 
bearing C). Therefore, the cumulative probability can 
be written as follows: 
 

F(L10,h)=0.1=1-e-(L10,h/) 

=L10,h ·ln(1/0.9)-(1/) = ao· n-1·(C/P)p·106  (4) 
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When the operating conditions change with respect to 
time, then equation (4) becomes a function of time 
together with the failure rate: 

 

(t)=a(t)o· n(t)-1·(C/P(t))p    (5) 

h(t)=(/(t))·(t/(t))-1    (6) 
 

Once equations (5) and (6) have been obtained, it is 
possible to evaluate the time evolution of the failure rate 
by using the finite difference method; considered a 

discrete and little time bucket t, the elementary variation 
of the failure rate can be written as: 
 

h(t+1)=h(t)+h(t)      (7) 

h(t)=h(t+t)-h(t)      (8) 
h(t)=[a(t+t) n(t+t)-1(C/P(t+t))p - a(t)n(t)-1(C/P(t))p]  (9) 
 

Fig. 1 shows the failure rate trend for a bearing with 
geometry and load conditions shown in table 1; the 
bearing is stressed following four load profiles; the first 
and second modes correspond to the application of a 
dynamic load equal to P1 and P2 respectively along a 
horizon H (P2>P1); the third and fourth modes are 
characterized by the permutation of the loads P1 and P2 
each along the half of the horizon. It is shown that given 
the non-linearity of the cumulative damage, the order in 
which the stresses occur significantly influences the trend 
of the failure rate; the heavier stresses lead to lower failure 
rates if they are endured earlier. Fig. 1 again shows that 
the minimum failure rate over time does not always 
correspond to the same load condition. This implies that 
the preventive maintenance period and the order with 
which the stresses follow their self, affect the operating 
result of production management. 

 
3.2 Job scheduling 
The production scenario of a single machine batch 
problem is simulated taking into account the following 
hypotheses: (i) machine can process one job at a time; (ii) 
set-up times are not sequence dependent and are included 
in processing times; (iii) the release times of batches are 
different, but they are identical for jobs of the same batch. 
The discrete event simulation model is based on the 
following equations and constrains. 

Let’s define: 

I the number of items; 
 
N the mean overall item demand; 
 
Jk the number of jobs for each item; Jk is random sampled 

Jk= rnd : k=1
I (Jk)=N; 

 
bj the batch composition; it is constituted by I elements of 

Jk jobs; bj=Aj x[1;I] ∶ ∑j=1
B(akj )=Jk  V akj ϵ Ak , k ϵ [1;I] , j ϵ 

[1;B]  
 
pj the processing time for each job; it is uniformly 
distributed in the range [pmin, pmax] (see Table 2); 
 

tr the time to repair in case of corrective maintenance; it is 
uniformly distributed in the range [trmin, trmax] (see Table 2); 
 
a(T) the temperature corrective coefficient; it depends on 
the operative temperature according to the point to point 
relation of table 3; the operative temperature is modeled 
by means of a sinusoidal function: 

T(t)=Tm+A·sen(1t+)+B·sen(2t+);  

where Tm is the annual average temperature, 1 is the 

annual temperature frequency, 2 is the daily temperature 

frequency and A, B,   are respectively the amplitude 
and phase of annual and daily temperature oscillation; 
 
Pj the equivalent dynamic bearing load corresponding to 
each job; it is uniformly distributed in the range [Pmin, 
Pmax] (see Table 2);  
 
nj the angular speed corresponding to each job; it is 
uniformly distributed in the range [nmin ; nmax] (see Table 
2). 
 
Cc the cost of each corrective maintenance intervention; it 
is modelled summing a fixed (Cc) and a direct dependent 
from the time to repair tr components:  
Cc=Cc+cvar·tr (see table 2). 
 
Cc the cost of preventive maintenance (see table 2); it 
doesn’t affect the job’s flowtime because it is performed 
out of any daily production shift.   
 
Tidle the overall lag of unavailability of the tool machine 
due to the maintenance interventions. 
Table 2 refers all numerical values which were assigned to 
each problem variable.   

Table 1: bearing principal features 

Variable Symbol Value 

Bearind external diameter (mm) De 42 

Bearing internal diameter (mm) Di 30 

Basic dynamic load rating (N) C 4,490 

Equivalent dynamic bearing load (N) P1 
P2 

2,000 
2,500 

Exponent for the life equation P 3 

Time horizon (h) H 2,000 

Angular speed (rpm) N 1,000 
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Figure 1: failure rate behaviour over time  
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Table 2: single machine production features 

Variable Symbol Value 

Overall item demand N 2,000 
Number of items I 100 

Number of jobs for each item Jk - 

Number of batches B 10 

Release time for each job rj - 

Processing time for each job pj [0.5; 3.33] h 

Cost for preventive 
maintenance 

Cp 5,000.00 € 

Cost for corrective 
maintenance 

Cc 5,000.00 € 

Variable cost for corrective 
maintenance 

cvar [500; 1,000; 
1,500] € 

Time to repair (corrective 
maintenance) 

tr [1.5; 144] h 

Overall time to repair 
(corrective maintenance) 

Tr - 

Temperature corrective 
coefficient 

a(T) (-) 

Basic dynamic load rating C 4,490 N 

Exponent for the life equation p 3 

Equivalent dynamic bearing 
load of each job 

Pj [400; 1600] 

Angular speed for each job nj [1,000; 
4,000] 

Completion time for each job Cj - 

Total idle time Tidle - 

Number of preventive 
maintenance intervention 

np - 

Number of corrective 
maintenance intervention 

nr - 

 
Forty-five productions were simulated; all scenarios are 
defined according to five scheduling criteria, three 
preventive maintenance period (Tp) and three variable 
costs for corrective maintenance (cvar). As regard to the 
scheduling criteria, jobs are scheduled considering: (1-2) 
the bearing stress severity they perform; bearing stress 
severity is defined by the product of the requested angular 
speed, n, and equivalent dynamic bearing load, P; the 
less/more a job stresses the bearing system the earlier it is 
scheduled; (3-4) the shortest/longest processing time; (5) 
randomly.  

Table 3: temperature corrective coefficient a(T) 
(lubrication ISOVG2, ν1=25 mm2/s) 

T (°C) ν ν/ν1 a(t) 

20 30 1,2 1 

25 22.19692 0.887877 0.7333 

30 17.35394 0.694158 0.4667 

35 14.09353 0.563741 0.3333 

40 11.76876 0.470750 0.2000 

 
The scheduling criteria are in the following respectively 
mentioned as: S, H, SPT, LPT and RND. 
Preventive maintenance period, Tp, is fixed respectively 
equal to 500, 1,250 and 2,000 h; the variable cost of 

corrective maintenance cvar is assumed respectively equal 
to 500, 1,000 and 1,500 €/h. 
Measures used as output of the Monte Carlo simulation 
are below reported: 

Makespan; M=Tidle+ Tr+max(Cj); V j ϵ [1 , N]   

Flowtime; F=∑j=1
N(Fj)= ∑ j=1

d (Cj-rj), Vj ϵ [1 , N]   

Total cost of maintenance; C=np·Cp+nr·Cc+Tr·cvar . 

 
4 Findings 
Each schedule scenario is simulated along a 1,000 
iterations process. 
The makespan increases with the preventive maintenance 
period Tp and appears to be unaffected by any of the 
above-mentioned scheduling criteria (see fig. 2). 
 

 

Fig.2 Makespan as a function of the preventive 
maintenance period Tp and scheduling criteria. 

 

 

Fig.3 Flowtime vs the scheduling criteria.  

 
The interval plots at 95% confidence level in Figure 3 
shows a remarkable influence of both production strategy 
and preventive maintenance period Tp on the total 
Flowtime F. Reducing the maintenance period Tp 
positively affects the Flowtime measure, which strongly 
influences the in-process inventory, i.e., the work-in-
process related cost (Baker and Triesch, 2013). As 
expected, conforming to the literature on the single-
machine scheduling problem, the Longest Processing 
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Time (LPT) dispatching rule yields a detrimental effect the 
total flowtime, regardless of the Tp level assumed. 
Another interesting finding regards the production 
policies S and H since no significant difference emerges 
under the Flowtime viewpoint. Finally, the random 
scheduling strategy seems to be worse than SPT, 
specifically when Tp increases. 
Figure 4 refers the total cost of maintenance, which finds 
almost always minimum value at Tp=1,250 h, 
independently from the other criteria. The random 
schedule enables the best tradeoff between preventive and 
corrective interventions balancing better jobs stress 
severity and machine tool aging. When the variable cost of 
corrective maintenance is set to the lowest value (cvar 
=500), a more frequent preventive maintenance (Tp=500) 
implies a higher maintenance cost than the one achieved 
by assuming a larger Tp. 
 

 

Fig.4 Overall maintenance cost along the schedule criteria 
and the cost of corrective maintenance. 

In other words, since a few failures happen, the cost of 
preventive maintenance dominates the cost due to 
corrective. On the other hand, whether the variable cost 
component of the corrective maintenance grows (cvar 
>500), the effect of Tp on the total maintenance cost 
relatively reduces and for cvar =1,500 it emerges that the 
intermediate value of Tp (i.e., 1,250) represents the best 
compromise among the provided alternatives. Such 
findings can be justified by considering that a lower Tp 
generate a higher number of preventive maintenance 
interventions while a higher Tp yields a higher number of 
corrective maintenance actions. 

Conclusion 

We codified a model allowing to simulate results of the 
application of scheduling criteria on a productive single 
machine scenario considering how the operating and 
environmental conditions affect the failure behavior of 
the machine tool and how the maintenance strategy and 
production mix affect the operating result. The study, 
although at an embryonic stage, aims to enhance the 
short- and medium-term planning by taking into greater 
detail the environmental and operational conditions in 
which production operates, offering the contribution of 
stochastic hybrid automaton models to those of 
scheduling optimization. The contribution that the 

sensitivity analysis can make to determining the best 
compromise between the aspects is still significant. 
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