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Abstract: Nowadays, smart factories more and more rely on key enabling technologies to optimize the management 
of operations. In the maintenance context, predictability is a major characteristic required for advanced monitoring 
and controlling systems, embedded in Cyber-Physical Systems (CPS), which are the building blocks of smart factories. 
As such, methodologies and tools proper of the Prognostics and Health Management (PHM) body of knowledge, 
represent the background on which a company should build their competitive advantage. However, promoting the 
application of PHM in current industrial scenario is not only a matter of digital technologies, but it encompasses 
engineering methodologies. These methodologies should be made available to learners so to transfer knowledge to 
industry. Therefore, a learning-by-doing approach is proposed, which aims at showing how the current software tools 
provide per se a complete platform for PHM for teaching purposes, without a strong requirement of real testbeds, at 
least at first sight. Also, the selection of MATLAB allows to transfer knowledge to learners with few or no 
programming skills. It is demonstrated how the engineering methodologies and tools underlying a robust PHM system 
could be developed during lectures independently from the availability of a laboratory or industry-like environment if 
the key characteristics of PHM are properly formalised. Therefore, the basic idea is to support the dissemination of a 
practical background about PHM, both in physical and virtual classrooms, aimed at providing advanced understanding 
of CPS-based smart factories.  
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1.Introduction 

Recently, the growing advances in digitalization of 
processes and systems have led to the next generation of 
manufacturing technologies by introducing the concept of 
smart factories. This concept is framed into the paradigm 
of Industry 4.0 where the manufacturing systems are 
defined as intelligent systems that rely on key enabling 
technologies to optimize the management of operations. 
Cyber-Physical Systems (CPS) are the building blocks of 
smart factories and predictability is one of their 
fundamental characteristics (Lee et al., 2017, Napoleone et 
al., 2020). As such, they impact on both production and 
maintenance management. The latter is particularly gaining 
momentum due to the potentialities offered by the above-
cited systems to have a deep and detailed knowledge of the 
current state of the machine and support diagnostics and 
prognostics analyses (Guillén et al., 2016). As such, 
Prognostics and Health Management (PHM) is becoming a 
relevant engineering discipline on top of which companies 
are making their competitive advantage. It represents the 
key to understand the machine health state, hence 
promoting field-synchronized and automated decision-
making (Negri et al., 2020). To fulfil this purpose, PHM 
consists of two main tasks (Teixeira, Tjahjono and Alfaro, 
2012): fault detection, and diagnosis and health 
management. Due to its importance, PHM has gradually 

matured to practical field applications receiving attention 
from both academia and industry. Therefore, a number of 
literature reviews on this approach have been proposed 
based on different perspectives (Si et al., 2011; Lee et al., 
2014; Vogl, Weiss and Helu, 2016; Weiss et al., 2016; 
Atamuradov et al., 2017; Javed, Gouriveau and Zerhouni, 
2017; Lei et al., 2018; Xia et al., 2018). The design of a 
framework for PHM implementation is challenging and 
application-specific, since it depends on the assets to be 
monitored, or on the criticality of component 
characteristics. Hence, different aspects such as data 
acquisition techniques, models and tools, and historical 
information should be taken into consideration to develop 
the most appropriate PHM approach. Moreover, PHM is 
not only a matter of applying digital technologies and 
advanced analytics to data already available. It requires a 
deep understanding of the asset of interest, which is a pre-
requisite to develop a PHM approach fit for purpose. The 
hard skills and analytic mind-set should be profound in the 
learners, being them engineering students, post-graduates, 
or practitioners, to let them be aware of the need for a 
strong engineering background. Therefore, it is worth to 
establish an experiential learning approach that supports 
transferring the basics of PHM in an easy way. 

Given these premises, the goal of this work is to propose a 
learning-by-doing approach to understand the basics of 
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PHM. The approach is thought for its application in 
physical and virtual classrooms. The core idea is to develop 
an experiential learning to gain conceptual insight and 
practical expertise without a strong requirement of real 
testbeds but leveraging on the integrated solutions 
provided by MATLAB. This experiential learning will be 
available for all the people involved in the development of 
PHM, from students to practitioners. After a recall on the 
basics of PHM in Section 2, the reasons behind the 
selection of MATLAB are reported in Section 3. Then, 
Sections 4, 5 and 6 explores some of the functional blocks 
in the PHM process, explaining how to implement them 
easily in MATLAB. Section 7 summarises the last steps of 
PHM. Finally, Section 8 reports first results from a 
preliminary application in a controlled environment and 
Section 9 draws some conclusions. 

2.Prognostics and Health Management basics 

The PHM process consists of different functional blocks 
or levels as reported in OSA-CBM (ISO-13374-1, 2003) 
specification (Figure 1). The firsts two levels, named L1 and 
L2, are data acquisition (DA) and data manipulation (DM), 
respectively. The former is the process of data collection 
and storage through sensor-based technology enabling 
physical connection with relevant data sources (asset, 
systems, controllers, etc.) to monitor their status. The latter 
involves data pre-processing (i.e., denoising, cleaning, 
integration, normalization) and feature extraction and 
selection to improve both quality and reducing redundancy 
(i.e., dimensionality) of data, aimed at converting it into a 
proper space for future analysis. The third level L3 is the 
state detection (SD). It is the process of detecting the asset’ 
state to identify the failure mechanism and it involves two 
different stages: (i) an ex-ante analysis of the working states 
based on determining the relationship between cause and 
effect of a failure event; (ii) an ex-post analysis (after 
models’ application) of working states based on defining 
the rules for alerting and isolate the failure when is detected. 

 

Figure 1: PHM architecture from ISO 13374-1, 2003 

The level L4 is health assessment (HA), which consists of 
the analysis of current asset’ health state combined with 

assessment reports to support the implementation of a 
proper maintenance plan for the monitored systems. The 
L5 is the prognostic assessment (PA) level, which aims to 
predict the remaining useful life (RUL) according to the 
future health state and usage trends of the monitored 
systems to support proactive decision making. Finally, the 
level L6 is the advisory generation (AG). It consists of the 
analysis of the information content for each alert, based on 
the diagnostics and/or prognostics results, to generate 
recommended actions for maintenance tasks and to define 
normative-based KPIs (Key Performance Indicators). 
Conversely, the SD is the core block of PHM resulting 
propaedeutic to next ones since it allows the identification 
of working states useful to normalise HA and PA results. It 
is in the scope of the proposed learning-by-doing approach 
to retrace the blocks from DA to SD, given their relevance. 
The experiential learning is favoured using MATLAB, 
whose selection is cleared out in Section 3. 

3.Reasons behind the selection of MATLAB 

The selection of MATLAB to support the experiential 
learning experience in PHM is due to several 
methodological and technological reasons: 

1. MATLAB can follow all the six levels of the PHM 
(Figure 1), from DA to AG. Especially, in relation 
to DA, MATLAB has the OPC Toolbox (link), 
which allows to leverage upon the OPC-UA 
protocol (Open Platform Communications – 
Unified Architecture), and MQTT (Message 
Queuing Telemetry Transport) via the 
ThingSpeak IoT platform (link) by MathWorks. 

2. MATLAB has a set of toolboxes and apps that 
allows even beginners to apply advanced analytics 
and get insights on the data, (almost) without the 
need to know how to program in MATLAB, for 
example: Signal Processing Toolbox (link) 
Classification Learner Toolbox (link), Predictive 
Maintenance Toolbox (link), Curve Fitting 
Toolbox (link). 

3. MATLAB has a free trial with full potentials, and 
it is also available for free with downgraded 
performance. In the latter case, the functioning is 
online only (link), with few cores reserved and 
adequate storage, accessible via browser for PCs, 
tablets, and smartphones. Moreover, for tablets 
and smartphones the MATLAB Mobile app (link) 
is available, used in the remainder, too. 

Besides, it is worth underlining that the selection of 
MATLAB is grounded on the availability of all these 
solutions in a single and standalone software tool. For the 
purposes of this work, it is possible to collect real-field data 
from sensors without the need to generate random ones 
through algorithms. Eventually, also Python could be used, 
even though more programming skill is required. 
Therefore, the proposed approach is especially fitted for 
those classes that require a fast understanding on the topic 
(e.g., maintenance engineers from industry) or students 
with few programming basics that anyhow need a to get a 
flavour on PHM. 

https://it.mathworks.com/products/opc.html
https://it.mathworks.com/products/thingspeak.html?s_tid=srchtitle
https://it.mathworks.com/products/signal.html
https://it.mathworks.com/help/stats/classificationlearner-app.html
https://it.mathworks.com/help/predmaint/index.html?s_tid=CRUX_lftnav
https://it.mathworks.com/products/curvefitting.html
https://matlab.mathworks.com/
https://it.mathworks.com/products/matlab-mobile.html
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3.1 MATLAB for PHM 

In the following sections, the goal is to retrace the first three 
functional blocks of the ISO 13374. Details on how each 
block could be performed in MATLAB are provided. As a 
support throughout this work, in Figure 2 a mapping 
between the MATLAB functionalities and the PHM 
process is realised. 

 

Figure 2: Mapping MATLAB functionalities with PHM 
functional blocks 

As anticipated, in this research only the DA, DM, and SD 
are tackled for their relevance in PHM. Furthermore, some 
theoretical tips for each block are provided to complement 
the usage of MATLAB. Therefore, in this work the authors 
stop at SD, but the lecturer could go far beyond to improve 
the learning experience. 

4. Level L1 - Data acquisition 

The acquisition of data is the first and fundamental block 
since raw data from various sources are identified and 
collected. It is crucial to let the learners understand that 
different kinds of data could be collected from the field. 
Understandably, the effectiveness of a PHM process 
implementation strongly depends on the choice of this set 
of variables to be monitored. According to (Jardine, Lin 
and Banjevic, 2006), “data collected in a PHM program can be 
categorised into two main types: the so-called event data and condition 
monitoring data”. Event Data (ED) includes the information 
on what happened (e.g., installation, breakdown, overhaul, 
etc.) and what the causes were and/or what was done (e.g., 
minor repair, preventive maintenance, oil change, etc.) to 
the selected physical asset, i.e., the machine. Condition 
Monitoring Data (CMD) includes instead the 
measurements related to the health condition/state of the 
physical asset (e.g., vibration data, acoustic data, 
temperature, pressure, humidity, environmental data). Said 
CMD types are the following: Value Type, when data 
collected at a specific time epoch is a single value (e.g., 
temperature, pressure); Waveform Type, when data is a 
time series (e.g., vibration data, acoustic data); and finally, 
Multidimensional Type, when it is, trivially, 
multidimensional (e.g., image data such as infrared 
thermographs, visual images, X-ray images). Given the 
possibilities offered by MATLAB, only CMD could be 
reproduced and used for PHM purposes since invented ED 
could be only speculative and misleading. Therefore, the 
lecturers and the learners should be aware that in this 
learning-by-doing approach, it is only possible to get in 

touch with CMD and elaborate over it. Thus, the MATLAB 
Online app for smartphone is used as data acquisition 
system, installed on an Android mobile phone with 6 GB 
of memory and 64 GB of storage. The app allows to 
activate several sensors of the mobile phone, like 
accelerometers, gyroscope, magnetic field sensors and even 
camera. Figure 3 provides a screenshot of the app, whose 
documentation could be found at the following link. The 
sampling frequency is set to 10 MHz but is tuneable 
depending on the final purposes. 

 

Figure 3: MATLAB Online app 

As far as this approach concerns, the OPC Toolbox and 
ThingSpeak could not be adopted since they require a real 
asset with installed sensors. However, these toolboxes and 
applications should be known by the learners since they 
ease the data collection in real industrial scenarios. 

Before to proceed with the description of the data 
collection, an excursus on how the simulated behaviour of 
a general machine could be realised is needed, as explained 
in subsection 4.1. 

4.1 Replication of machine behaviour 

The behaviour of a machine highly depends by the current 
type of machine under analysis. For example, industrial 
centrifugal pumps have generally a design point. Thus, 
apart from very specific needs, plant owners typically set 
the pump to work at specific rpm (revolutions per minute) 
and head (H, related to the kinetic energy of the fluid). 
Again, CNC (Computer Numerical Control) machine tools 
have several part programs that could be realised, and the 
axes and the spindle could work at various speeds, 
orientations and so forth. These are two examples of 
machines whose behaviour is radically different. However, 
independently from the machine type, the PHM must be 
able to discern between the different operations in which 
the machine could be (Wang et al., 2019).  

Therefore, it is worth assuming a machine that has four 
different operations. The operations are represented by 
emulating four different movements of the mobile phone, 
whose sensors allow to register some relevant variable 
useful for PHM. Thus, the data collection performed with 
MATLAB is organized in such a way. In this work, only the 
accelerations are reported for the sake of simplicity, but as 
anticipated, multiple sensors could be activated on the 
mobile phone. The emulated movements start from the 
origin of the reference system (see Figure 4). Movements 1, 
3 and 4 are performed in a similar way, that is, replicating 

https://it.mathworks.com/help/matlabmobile/ug/sensor-data-collection-with-matlab-mobile.html
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the same accelerations. Movement 2 is the same as 
movement 1 but its accelerations are doubled. 

 

Figure 4: Schematic representation of the movements, i.e., 
the operation, reproduced by moving the phone 

Once the MATLAB Online app is activated, i.e., the 
embedded sensors are ready to collect data, the movements 
have been reproduced in series, from 1 to 4. Indeed, it is a 
given some noise due to the movement by hand, but noise 
is typical also of industrial applications. Therefore, the 
CMD of waveform type is collected, namely, the 
acceleration signals from the accelerometers, reported in 
Figure 5 for the three axes. 

 

Figure 5: accelerations measured on the x, y, and z axes 

through the mobile phone 

The collected signals are of “timetable” format in 
MATLAB, but, if needed, they could be converted to array 
for easier manipulation. The generated table has the 
following variables: 

• Timestamp, which includes date and time of the 
sample, e.g., 04-Feb-2021 21:47:05.143. 

• X, which includes the sample of the acceleration 
on the x axis. 

• Y, which includes the sample of the acceleration 
on the y axis. 

• Z, which includes the sample of the acceleration 
on the x axis. 

Each X, Y, and Z could be understood as time-series and 
timestamp and axes are presented as a matrix, as shown in 
Figure 6. If additional sensors are activated, then other 
timetables are generated, one for each type of sensor (see 
Figure 7), always with the associated timestamp for each 
sample. As shown in the remainder, even in this simple 
practical experience, the learners will understand the impact 
of missing sensors and the importance of avoiding a 
complete data-driven approach to the problem: the 
engineering and industrial experience remains a 
cornerstone of PHM applications, translated in this case in  

the knowledge of the different operations. 

 

Figure 6: The generated “timetable” in MATLAB when 

collecting the accelerations on the three axes 

 

Figure 7: Each timetable includes signals for each type of 
sensor e.g., accelerometers for Acceleration 

Indeed, thanks to this a priori knowledge, it is possible to 
manually associate a categorical variable (in this case 0, the 
setup, and from 1 to 4, for the movements, respectively) so 
to establish a supervised experiment for the subsequent SD 
phase (see Section 6). 

5. Level L2 - Data manipulation 

In this case, the data are collected so to have very low 
random noise, no missing data and outliers. Nevertheless, 
if interested, these classic and general characteristics 
impacting on data quality could be reproduced in the 
dataset for learning purpose. Therefore, the only relevant 
phase within the DM block is feature engineering. In this 
block, it could be possible to use the Signal Processing 
Toolbox in MATLAB to study more thoroughly the 
collected signals. However, in authors’ teaching experience, 
it may be better to implement some very basic coding 
operations. For example, with very few programming lines 
(the used functions are mean() and std(), whereas the CV, 
coefficient of variation, is the ratio of the two, i.e., 
std()./mean()), it is possible to make an explorative analysis 
of the data, as reported in Table 1. 

Table 1: Explorative analysis 

 
Mean 
[m/s2] 

Standard 
deviation [m/s2] 

CV  

Axis x 0.6593 2.8617 4.3405 
Axis y 0.4333 0.7177 1.6562 
Axis z 10.1230 1.8509 0.1828 

It is relevant to underline the relevance of an explorative 
analysis since signals with high CV are likely to hide 
additional information content. To this end, additional 
elaborations are needed, and new and more complex 
features could be adopted. 

5.1 Details for feature engineering 

Despite expecting to apply a supervised or an unsupervised 
method in the SD phase, the feature engineering remains 
pivotal for a well-performing PHM process. Therefore, the 
learners should be aware of the importance of extracting 
and selecting the correct features from the signals. There 
are two “directions” on which to act: i) the domain (time, 
frequency, time-frequency), and ii) the type of feature 
(mean, standard deviations, Kurtosis, FFT, etc.). Even in 
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this learning experience, the selection of a specific domain 
brings to different results. The selection of some features 
among all the possible ones, could be made in various way, 
e.g., by applying the PCA (Principal Components Analysis). 
It is not in the scope of this learning experience to deep 
dive into this feature engineering phase, that resides under 
the hat of “signal processing”, so the attention is given to a 
simpler case, in which selection is made a priori. Indeed, in 
the time domain, as an easy, yet meaningful feature, the 
RMS is adopted since it is well used in scientific and 
industrial literature given its capability to represent the 
energy dissipated via increasing vibrations (Cattaneo and 
Macchi, 2019). Therefore, for the three signals, one per axis 
(x, y, and z), the RMS is calculated, leading to three features: 
RMSx, RMSy, and RMSz. In Figure 8, the RMS is calculated 
after a proper partitioning of the signals, based on the 
available knowledge of the operations. 

 

Figure 8: RMSx evaluated for the four operations (identified 

via the additional labels during DA) 

The RMS on the x axis shows that there are at least two 
main “families”, called working states: the first one groups 
together 1, 3 and 4, while the second group has 2, only. 
Therefore, it is possible to assume at least two working 
states since, within the first group, there is no statistical 
difference between RMS for 1, 3, and 4. 

 

Figure 9: Frequency spectrum 

On the other side, when analysing the frequency spectrum, 
thus in the frequency domain, reported in Figure 9, it is 
possible to see three main peaks, two on the x axis and one 
on the z axis. Thus, it is possible to conclude that there are 
at least three main working states the machine experiences 
in this case. Therefore, the analyses show different pitfalls: 

• Movements 1, 3 and 4 are not distinguished by the 
RMS. 

• Movements 1 and 4 are not distinguished by the 
frequency analysis. 

In this specific case, the frequency analysis shows better 
results if compared to the time-domain analysis with the 
RMS. However, the working states are anyhow confused 
since 1 and 4 would have required an altimeter to be 
distinguished. 

Moreover, it is worth underlining the different results an 
unsupervised or a supervised approach could lead to: 

• In an unsupervised approach, there is no way to 
evaluate the goodness of the two analyses since 
the operations are not labelled. The only 
conclusions that could be drawn is that the 
frequency spectrum distinguishes more working 
states than the RMS. This case is more 
challenging, but it represents a real case when the 
production plans are not available for the 
machine, and so it is not possible to identify the 
different operations from the very beginning. 

• In a supervised approach, it is possible to 
evaluate the goodness of fit since the operations 
are identified and labelled. Therefore, it is possible 
to conclude that none of the two features is able 
to correctly characterise the operations, since the 
identified working states are less in number. 
However, the analysis in the frequency domain 
outperforms the one in time. This approach could 
be adopted when the production plan is clearly 
retraceable in the company and, also, when the 
maintenance reports are available since some 
working states could represent abnormal 
operations. 

Therefore, it is possible to understand that, even in the 
controlled environment in which this experiment is carried 
out, the data analysis reveals some shortfalls that are 
important lessons learnt for unexperienced students. 
According to authors’ industrial experience, it is important 
the learner could manage both unsupervised and 
supervised approaches; he/she should be aware of the 
shortfalls each approach has. Indeed, it is relevant to 
understand that a complete data-driven approach must be 
supported by an adequate understanding of the 
industrial/engineering problem. Maintenance engineers 
and operators’ knowledge is fundamental to implement a 
well-performing PHM since they could help in assessing 
the results of the feature engineering and then the identified 
working states could be verified. The knowledge of the 
working states unleashes the development of a Novelty 
Detection (ND) approach in the SD phase, which allows to 
identify anomalies in the current behaviour of the machine. 

6. Level L3 - State detection 

Fixed the results in level L2, the ND approach by (Pimentel 
et al., 2014) could be retraced. The health of the asset is 
modelled to represent its normal state, to detect, in such a 
way, any novelty (or abnormality) once it appears in the 
system. The learner should be aware, at this point, of the 
importance of knowing and considering the different 
working states. Indeed, a novelty in the system could arise 
for different reasons: it could be due to a new operation the 
machine is performing and therefore the machine’s state is 
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different from all the ones previously registered. Or, 
conversely, the novelty could be caused by a degradation 
process in evolution, that again, results in a different 
machine’s state. Assuming the labelled working states, that 
is, connected with the machine’s operations, a supervised 
learning approach could be established. As for this 
experiential learning, it is suggested to follow this approach 
at first since the unsupervised one is more challenging 
(remind that the operations should be manually associated 
to the gathered signals in MATLAB for the supervised 
approach). Therefore, the Classification Learner Toolbox 
of MATLAB is adopted to develop a classification 
algorithm. The selected and extracted classification 
algorithm can be used in a ND way. Indeed, if the algorithm 
is misclassifying an observation, this could be because the 
observation is moving away from its normal behaviour. In 
the following, Figure 10 reports a picture to visualize one 
of the results when the RMS feature is used for running the 
Classification Learner toolbox. 

 

Figure 10: Classification Learner results considering the 
RMS in the x direction. The linear discriminant algorithm 

has reached an accuracy of the 99.2% 

In this case the learner can use some simple functions 
present in MATLAB (i) to prove the normality of data, for 
example using the kstest() function (link) and (ii) to build a 
control chart (link).  

 

Figure 11: Empirical distribution of RMS in x direction 

(left) and a control chart for eventual alerting (right) 

In this experiential learning, the RMS of each working state 
is described through a normal distribution and a control 
chart is properly established. See Figure 11 for details. If an 
observation falls over the threshold, an outlier (so, an 
anomaly/abnormality) has appeared in the system and the 
“machine” is likely experiencing a new state in terms of 
health. Therefore, with these approaches, the learner is 
aware that several ways could be followed to implement a 
SD and ND. Conversely, a probabilistic ND approach is 
applicable, trying to describe each working state using a 
probabilistic distribution function. The distribution is then 
used to set up a control chart for controlling the health state 

of the system, see for example (Fumagalli et al., 2019). In 
practice, the selection of the approach could be bounded 
by some limits of the data and of the available engineering 
knowledge of the problem. 

7. Completing the PHM process 

In the scope of this work, the learning-by-doing approach 
stops at SD. However, the lecturers could complete the 
PHM overview by listing some takeaways for the learners, 
hereinafter summarised according to authors’ industrial 
experience. The next functional block of the ISO 13374 
includes the HA. Indeed, so far, none has been said about 
the asset be in healthy, abnormal, or faulty state. Two 
options are available: 

• If the data are collected under controlled 
conditions, it could be known a priori if the 
working states refer to the healthy state. 

• If the data are collected during the normal asset 
operations: 

o If maintenance-related knowledge, e.g., 
reports, is available, then it may be 
possible to correlate some working 
states with some ED (events). 

o If no additional knowledge is available, 
then nothing could be said about the 
health state of the asset.  

Therefore, for the HA, the knowledge of the asset and of 
the surrounding industrial context is fundamental. For PA, 
in MALTAB there exist some built-in functions that could 
be used to project the features in the future and to forecast 
their behaviour. In this case, the Predictive Maintenance 
Toolbox could be used, upon the establishment of an 
extensive data gathering campaign together with real time 
collection. Finally, the AG is fostered in MALTAB by the 
usage the MATLAB App Designer that allows fast 
prototyping of a graphic user interface. However, these 
functional blocks are outside the scope of this work, but 
could be implemented if required, with suitable 
assumptions. 

8. Considerations from a controlled application 

The approach was tested in the research group, with the 
involvement of three researchers. The main goal was to 
identify technical pitfalls that may arise, that have been 
identified as: 

• The saving of the data on the mobile phone could 
fail for various reasons (Internet connections, 
problems with MATLAB account). 

• Since the realised dataset is built as a structure in 
MATLAB, some command line / hints must be 
provided to support learners in the experience. 

• For the supervised approach (classification), the 
collected dataset must be manually modified by 
adding operations’ labels (0, 1, 2, 3, 4). 

It is worth to take into account this before starting this 
learning experience. Moreover, there are some additional 

https://it.mathworks.com/help/stats/kstest.html
https://it.mathworks.com/help/stats/controlchart.html
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organisational shortfalls and constraints that need to be 
tested in class. These will be explored for future works. 

9. Conclusions 

In this work, a learning-by-doing approach for PHM is 
described and implemented. It could serve as a basis on 
which to develop an experiential learning at various levels, 
from university students to practitioners. The proposed 
approach is implemented in MATLAB as it is a standalone 
software tool capable to exploit all the functional blocks of 
the ISO 13374-1 without strong coding skills. The idea 
finds its root in the current situation where virtual 
classrooms are mandatory due to pandemic. However, this 
change may be less temporary than thought since long-
distance courses have been favoured, e.g., in other 
countries, and is even expected to increase over time. 
Moreover, the willingness behind this paper is to promote 
also an adequate experiential learning without the strong 
requirements of real physical assets. The proposed 
MATLAB-powered approach is independent from 
machines from which to collect data. Undoubtfully, 
gathering data in industrial context is an incomparable 
value-added to teaching and learning PHM. Hopefully, this 
work could be of help to professors and lectures active in 
maintenance and related new technologies. The overall 
underlying idea is to support the dissemination of a 
practical background, framed into new technologies 
techniques and approaches, aimed at providing advanced 
understanding of CPS-based smart factories. The authors 
claim this work also as a possible source to inspire some 
innovative approach to make learning in SMEs (Small and 
Medium Enterprises), because it works with the possibility 
to use limited resources. 
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