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Abstract: Cyber-physical systems and the fourth industrial revolution are reshaping the way production systems are modeled 

and controlled. Since their emergence as new simulation paradigm, Digital Twins (DT) have been supporting decisions in 

various industrial engineering fields, and production planning and control is a significant scope for future advances with the 

aid of this technology. Literature reports interesting works on DT-based production scheduling. However, only few research 

works related to DT-based production control were found in the literature and in particular a literature gap lies in investigating 

the use of DT for enhancing existing production control mechanisms, despite it is a promising technological support for granting 

robustness and stability to the manufacturing systems performance. The authors aim to contribute to this topic by proposing a 

new framework for model-based production control grounded on DT simulations, focusing on WIP and throughput control. 

Thanks to the predictive capabilities provided by the DT, an iterative optimization of production control parameters over a 

rolling horizon has been developed, also inspired by the theory on model-based predictive control. The framework includes 

load-oriented centralized and decentralized control procedures, improved by using a Particle Swarm Optimization (PSO) aimed 

to recursively set the WIP limits according to estimates of production outputs. The proposed framework has been validated 

through simulation in a general flow shop case, proving that the framework is effective in increasing throughput while reducing 

WIP.  
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I. INTRODUCTION 

The digitalization of manufacturing represents a crucial 

transformation for today’s industry and a great 

opportunity to achieve higher levels of productivity while 

reducing costs.  

The advent of new digital capabilities within Industry 4.0 

stream has transformed several managerial functions. 

Production Planning & Control (PPC) could be innovated 

to enable the creation of further value through the usage 

of new technologies [1].  

Among the Industry 4.0 digital technologies, Cyber-

Physical Systems can open the way to real-time 

monitoring and synchronization of the shop floor 

activities to the virtual space [2]. In fact, the cyber part 

can realize computations that include data analysis and 

simulations. Within this context, the concept of Digital 

Twin (DT) has emerged as the new paradigm for 

simulation synchronized with the field [3]. 

Implementing DT within Industry 4.0-enabled 

manufacturing systems could allow exploiting their 

capabilities to optimize production [4]. Exploiting DT for 

supporting production control still represents an almost 

unexplored field in research, especially in the concern of 

order release methods. 

The rest of the document is organized as follows. Section 

II reviews the relevant literature, and section III defines 

the objectives of this research work. The proposed 

framework is presented in section IV and some details 

related to its implementation are provided in section V. 

The experimental results are reported in section VI, and 

they are discussed in section VII; finally, section VIII 

includes conclusions and future research directions. 

II. REVIEW OF THE LITERATURE 

This research work originates from an analysis of the 

existing literature concerning the use of DT for control in 

manufacturing, particularly focusing on methods for 

releasing orders.  

Several research works deepen this concept emphasizing 

the simulation aspect of the DT as a core component of 

various optimization frameworks. Instead, other works 

consider the DT model as purely data-driven, often with 

a black-box approach.  

Cimino et al. present a DT based on a Discrete Event 

Simulation (DES) model in order to improve the 

visibility of production events, which could be useful for 

production control [5]. Mykoniatis et al. proposed a DT 

based on a hybrid model able to combine the advantages 

of DES and Agent-Based Modelling [6]. Ragazzini et al. 

present a DT based on a DES model which performs a 

what-if analysis to allow a reinforcement learning agent 

to adjust and, thus, improve the parameter of CONWIP 

[7].  

Park et al. illustrate how DTs play a role in providing the 

virtual environment for training machine learning 

algorithms [8], [9]. The work presented by Min et al. 

represents a relevant example of how the machine 
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learning-based production control can find the optimized 

real-time control parameters based on the DT model and 

real-time data [10]. Donhauser et al. considered 

production control based on a predictive-reactive model 

to analyse the impact of the deviations from a baseline 

[11]. May et al. present the situational control agent 

selection as an additional feature of DT that could 

improve production control [12]. In fact, it allows to 

select the most suitable control policy for the current 

condition, based on the execution of multiple DT 

simulations. The works proposed by Guo et al. represent 

two relevant examples in this sense in which the DT 

integrates and synchronizes production jobs data between 

physical and cloud space for controlling operations [13], 

[14]. Also, a real-time ticket system inspired by Kanban 

control theory is presented. Similarly, Zhou et al. worked 

on another proposal for the digitalization of Kanban with 

the aid of DTs [15]. The authors describe a way to 

produce and manage order data in real-time through the 

knowledge-based intelligent skills of the DT. Both 

Borangiu et al. and Ma et al. deepen the analysis of 

artificial intelligence and DT, presenting DT based on 

predictive models [16], [17]. The predictive models built 

using neural networks, can both assess the current state 

and evaluate future ones. The models are trained with 
historical and sample data, but predictions are performed 

according to the data acquired in real-time. 

Overall, the literature findings provide evidence that DT 

are helpful for the decision-making within production 

monitoring and control through real-time simulation, 

improving or optimizing the manufacturing systems 

performances, when used in addition to control methods. 

Nevertheless, the critical analysis of the same findings 

also allows to identify a relevant gap in the scientific 

literature. In fact, to the best of the authors’ knowledge, 

there are no research studies aiming at using DT to 

innovate and improve existing production control 

mechanisms. Furthermore, there is no tangible evidence 

of how Industry 4.0-enabled smart capabilities may 

support the decision-making process of industrial control 

during the shop floor operations through simulation. 

III. RESEARCH DESIGN 

According to the results of the literature review and the 

identified knowledge gaps, the main objective of this 

work is formulated: this work aims at the development of 

a DT-based optimization framework for improving an 

existing order release mechanisms through online 

adjustment of its parameters. This is granted by the DT 

predictive capabilities that are utilized for the support of 

near real-time decision-making processes in production 

control. 

In order to achieve this objective, a simulation-based 

optimization framework is proposed including some 

elements of Model Predictive Control (MPC) theory [18]. 

The similarities between the DT and MPC lie in the use 

of a model representing the current state of the physical 

system and in the possibility to use such a predictive 

model to iteratively optimize the control of the physical 

system. Indeed, the similarities between the “sensor-to-

controller” and “controller-to-actuator” (typical of 

advanced control systems) and the physical-to-virtual 

and the virtual-to-physical world (characteristics of the 

DT) were previously identified in a review by Jones et al. 

[19]. Moreover, this would be aligned also with the 

definition of DT provided by Kritzinger et al., since it 

could allow closing the loop thanks to the feedback 

provided to the physical system, enabling autonomous 

control actions [20]. 

An existing production control mechanism including 

both a centralized and decentralized part could be 

selected as a starting point for this work. Indeed, this 

would allow the developed framework to have a broader 

impact on the system [21], [22].  

IV. PROPOSED FRAMEWORK 

A novel optimization framework is proposed to enable 

the adoption of the DT for improving a traditional 

production control mechanism through the online update 

of its control parameters. The proposed framework 

includes four key elements: 

1. the physical production system (or even, in a 

prototypical case, also a simulation model 

replicating its connectivity capabilities; in this 

specific case, we may talk of a physical twin); 

2. the DT of the considered production system; 

3. the production control system, applied both on 

the physical system and on its DT; 

4. the optimization algorithm, working within the 

virtual space and interconnected with the DT to 

perform simulation-based optimization. 

A detailed description of the proposed framework is 

discussed hereafter, while its schematic representation is 

provided in Fig. 1. 

 

Fig. 1. Proposed framework 

A. Digital Twin 

The DT is based on a DES model, and it is synchronized 

with the physical system to mirror its current state. The 
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information required by the DT includes the Work In 

Progress (WIP) of each workstation and the state of each 

workstation. In other words, the DT also contains the 

state of each order released on the shop floor. 

The current system state is the starting point for the 

prediction of the future performances through the 

simulation capabilities of the DT. The results of the 

simulations performed by the DT will be crucial for the 

optimization of system performances in near real time. 

B. Production control 

The production control system considered for this work 

is adapted from DEWIP protocol proposed by Lödding 

[23]. It has been selected because it is constituted of both 

a centralized and a decentralized part. Despite this, the 

only control variables to be considered are the WIP 

limits, one per workstation in the considered system. The 

WIP limit represents the maximum WIP allowed on a 

certain workstation. 

• Centralized control refers to the orders release 

mechanism. Prior to releasing an order for 

production, the WIP in the first and the second 

workstations in the order routing is checked to verify 

the compliance withtheir WIP limits. Thus, orders can 

be released only when the WIP on the first two 

workstations fall below their WIP limits; 

• Decentralized control refers to the control of the 

orders already released on the shop floor. An order 

can proceed to the next workstation in its routing only 

if WIP limits are not exceeded. Indeed, for each 

completed order on any workstation, the following 

workstation in the order routing determines whether 

to authorize the arrival of the new order according to 

its current WIP and its WIP limit. Indeed, if the WIP 

on the workstation exceeds the workstation WIP limit 

the authorization is refused. Otherwise, the order can 

proceed, and it is moved to the workstation. 

C. Optimization algorithm 

To perform the optimization a Particle Swarm 

Optimization (PSO) algorithm is adopted and coupled 

with the DT. The optimization is based on the concept of 

rolling horizon, borrowed from the MPC theory. The 

reduced computational time required to obtain a solution 

and possibility to reuse the whole population of 

suboptimal solutions suggested the choice of this 

metaheuristic algorithm. Other optimization algorithms 

could be used in the framework and their comparison will 

be object of a future study. 

The optimization is performed repeatedly with a 

predefined frequency, in a time-based fashion, thus 

resulting in the split of the time horizon in a series of 

control steps. 

At the end of each control step, the optimized WIP limits 

obtained are fed back to the physical system, enabling 

their dynamic adjustment. Indeed, the physical system 

uses the optimized WIP limits received at the previous 

control step to control the order release and the 

operations of the orders already released in production in 

the physical system. The optimization process is depicted 

in Fig. 2. 

Given the characteristics of the selected production 

control method, both decentralized and centralized 

control can be improved by the DT by dynamically acting 

to adjust the WIP limits. 

 

 

Fig. 2. Sequence diagram of the optimization process 

A novel objective function is also proposed, in order to 

drive the DT-based optimization process. The objective 

function is composed of two parts to account both for the 

WIP and for the throughput (TH), aiming at minimizing 

WIP and maximizing TH. The first expression indirectly 

considers the WIP by accounting for the sum of the ratios 

between of WIP limit and the average WIP limit in 

correspondence with the maximum TH. The second term 

represents the ratio between the TH and the maximum 

TH on the line under the selected production control 

protocol. Weight parameter α must be set through the 

analysis of multiple experiments. 

Each solution considered in the optimization process 

includes a value of WIP limit for each workstation of the 

considered production system to be optimized. A random 

variation of the WIP limits is fed to the DT to evaluate its 

effect on the future throughput of the system. The PSO 

interacts again with the DT by assessing the effect of the 

predicted system’s throughput in the expression of the 

objective function to be minimized, whose aim is to 

reduce the WIP limits while taking care of the 

detrimental effect that this reduction has on the 

throughput of the system. 

min 𝑓(𝑇𝐻, 𝑊𝐼𝑃𝑖) = 𝛼 ∑
𝑊𝐼𝑃𝑖

𝑊𝐼𝑃̅̅ ̅̅ ̅̅
𝑖

𝑛

𝑖=1

− (1 − 𝛼)
𝑇𝐻

𝑇𝐻𝑚𝑎𝑥
 

𝑠. 𝑡.      𝑊𝐼𝑃𝑚𝑖𝑛 < 𝑊𝐼𝑃𝑖 < 𝑊𝐼𝑃𝑚𝑎𝑥   

where: 

𝛼 weight  

𝑊𝐼𝑃𝑖 = 𝑊𝐼𝑃 limit of workstation 𝑖 
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𝑇𝐻 = throughput 

𝑇𝐻𝑚𝑎𝑥 = maximum throughput of the system 

𝑊𝐼𝑃̅̅ ̅̅ ̅̅
𝑖 = mean WIP limit of workstation 𝑖  

in correspondence of 𝑇𝐻𝑚𝑎𝑥 

𝑊𝐼𝑃𝑚𝑖𝑛 = lower bound for WIP limits 

𝑊𝐼𝑃𝑚𝑎𝑥 = upper bound for WIP limits 

V. IMPLEMENTATION 

For the validation, the methodology proposed by Barbieri 

et al. was adopted [24]. It describes how to implement a 

DT-based scheduling framework connecting the DT to a 

virtual commissioning model rather than to the system 

itself. Similarly, also Ait-alla et al. defined a 

methodology to evaluate a DT without establishing a 

connection with the real system, using its so-called 

physical twin instead [25]. Thus, the physical production 

system is replaced with its model, based on DES. 

The type of production system selected for the purpose 

of this work on which the experiments were performed is 

the general flow shop. It is thoroughly described in the 

work by Oosterman et al. and also depicted in Fig. 3  [26]. 

Most relevant parameters were taken from the work by 

Thürer et al. and are reported in Table I [27]. The main 

difference with respect to the well-known pure flow shop 

configuration is that jobs do not have to be processed in 

every work center and thus they only visit the ones 

required from routing specifications. 

 

Fig. 3. General flow shop [26] 

TABLE I 

Parameter Value 

No. of work centres 6 

Re-entrant flows No 

Routing length of jobs 

(operations per job) 

Discrete, uniform 

distribution [1, 6] 

Operation processing 

times 

Truncated 2-Erlang 

distribution (mean = 

1[min], max = 4 [min]) 

Inter-arrival times Exponential distribution 

(mean = 0.648 [min]) 

Queue lengths Limited and all equal (15 

jobs) 

Simulation time 60 [min] 

VI. EXPERIMENTAL RESULTS 

The proposed model has been assessed through 

computational experiments to quantitatively evaluate the 

effectiveness of the proposed DT-based production 

control system. The performances of the system 

enhanced with the proposed DT-based optimization 

model are compared against the ones obtained with the 

standard DEWIP method. Within this work it is also 

called static control method, since the control parameters 

were optimized before running the experiments, but they 

are not changed adaptively. The improvements brought 

by the DT-based optimization model have been 

investigated following two main strategies: TH 

comparison (A) and WIP comparison (B). 

A. TH comparison 

The first analysis performed aims at studying how the 

proposed framework could improve the TH of the system 

under analysis for similar WIP average levels. For this 
reason, the performances obtained implementing the DT-

based optimization for production control are compared 

to those obtained with the use of the same production 

control method after optimizing its parameters for 

maximizing productivity. To achieve this, ten runs for 

each experimental setup were performed and the 

statistical analysis of the experimental results is reported 

in Table II. 

TABLE II 

SUMMARY DATA 

Model Performance Mean StDev 95% CI 

DT-

based 

TH [ord/h] 86.00 5.12 (82.88; 

89.12) 

WIP [min] 82.09 8.26 (76.12; 

88.06) 

Static 

control 

TH [ord/h] 75.30 4.22 (72.18; 

78.42) 

WIP [min] 86.20 9.52 (80.68; 

91.72) 

 

An Analysis Of Variance (ANOVA) is reported in Table 

III. It proves that TH is higher adopting the DT-based 

approach for control with statistical significance. Fig. 4 
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graphically represents the results in terms of TH for each 

experiment. 

TABLE III 

ANOVA FOR TH 

Source DF Adj SS 

Adj 

MS 

F-

Value 

P-

Value 

Factor 1 572.5 572.45 26.01 0.000 

Error 18 396.1 22.01     

Total 19 968.6       

 

 

Fig. 4. Interval plot for TH 

A paired t-test was performed to quantify the difference 

in TH between the experiments. The results are reported 

in Table IV, while Fig. 5 shows a boxplot of the 

differences in WIP between the two experiments. 

TABLE IV 

PAIRED T-TEST FOR TH 

Mean StDev SE 

Mean 

95% CI 

for 

T-

Value 

P-

Value 

10.70 4.32 1.37 (7.61; 

13.79) 

7.83 0.000 

 

 

Fig. 5. Boxplot for TH differences  

To conclude this part of the experimental analysis, the 

equivalence of the average WIP values in the two 

experiments must verified. For this reason, a Tukey test 

is performed and the results depicted in Fig. 6 show that 

the confidence interval includes zero and thus WIP 

values cannot be considered statistically different. This 

suggests that the TH increase granted by the DT-based 

approach for production control is achieved without any 

significant improvement in the average WIP. 

 

Fig. 6. Tukey test on WIP 

B. WIP comparison 

An additional analysis was performed to prove that the 

application of the DT-based optimization model leads to 

lower WIP while keeping a similar value for the TH of 

the production system. Table V reports statistical analysis 

for the ten runs of each experiment.  

TABLE V 
SUMMARY DATA 

Model Performance Mean StDev 95% CI 

DT-

based 

TH [ord/h] 
86.00 5.12 (82.88; 

89.12) 

WIP [min] 
82.09 8.26 (76.16; 

88.01) 

Static 

control 

TH [ord/h] 
83.70 5.17 (80.28; 

87.12) 

WIP [min] 
92.73 9.66 (86.76; 

98.70) 

 

Table VI contains an ANOVA, proving statistical 

significance of the difference between the WIP for the 

two experiments, proving that WIP is lower with the DT-

based approach for control. Moreover, Fig. 7 graphically 

represents the outcomes in terms of WIP for the two 

experiments. 

TABLE VI 

ANOVA FOR WIP 

Source DF Adj SS 

Adj 

MS 

F-

Value 

P-

Value 

Factor 1 566.2 566.15 7.01 0.016 

Error 18 1453.7 80.76     

Total 19 2019.9       
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Fig. 7. Interval plot for WIP 

A paired t-test was performed to quantify the difference 

between the experiments. The results are reported in 

Table VII. Fig. 8 shows a boxplot of the differences in 

WIP between the two experiments. 

TABLE VII 

PAIRED T-TEST FOR WIP 

Mean StDev SE 

Mean 

95% CI 

for 

T-

Value 

P-

Value 

-10.64 5.58 1.76 (-14.63; 

-6.65) 

-6.03 0.000 

 

 

Fig. 8. Boxplot for WIP differences 

Finally, a Tukey test is performed to check that the two 

experiments report almost the same TH values. As shown 

in Fig. 9, the confidence interval includes zero, and 

therefore they are not significantly different. 

 

Fig. 9. Tukey test on TH 

VII. DISCUSSION 

The experimental results prove the effectiveness of the 

proposed framework in improving the TH and WIP 

performance of the general flow shop under analysis.  

The DT-based optimization supports dynamic 

adjustments in the production control protocol allowing 

to increase flow shop TH while reducing WIP. As 

remarked previously, two separate analyses were 

conducted to analyze the performance for both 

performance objectives separately, since the proposed 

method cannot be strictly classified as multi-objective 

optimization .Indeed, the weighted sum method adopted 

reduces the problem to single-objective optimization 

[28]. In fact, both TH and WIP are normalized and just 

summed according to the weight parameter α, rather than 

searching for a set of optimal solutions minimizing both.  

Regarding the improvements in productivity, the first 

analysis shows a statistically significant improvement of 

14.2% (Table II). The second analysis proves that by 

achieving similar levels of TH, the DT-based production 

control achieves WIP levels that are 11.5% lower with 

statistical significance (Table V). This proves that for 

both performances considered, the DT-based 

optimization can provide improved performances.  

VIII. CONCLUSIONS 

This work proposed a novel optimization framework for 

production control based on DT which is a problem still 

little studied in literature, despite the existing promising 

approaches in production control. It is grounded on the 

principles of simulation-based optimization, according to 

which the algorithm obtains a solution by testing 

different control levels in the DT simulation environment 

prior to being deployed on the field. This work exploits 

the real-time capabilities of the DT to improve the overall 

system’s TH while reducing the WIP. Moreover, the 

concept of rolling horizon for optimization is borrowed 

from the MPC theory.  

Overall, production control decisions are supported by a 

framework taking decisions to dynamically limit the WIP 

on each station. For this reason, the DT is applied to both 

decentralized and centralized control by adjusting the 

same set of control variables. 

Experimental results proved that the dynamic adjustment 

of the WIP limits during operations leads to better results 

in system performances compared to the static setting of 

the optimized control variables. It was shown that the 

framework can improve both TH and WIP. In fact, results 

show similar improved TH values for similar WIP and 

reduced WIP for comparable production output in terms 

of TH.  

From an academic viewpoint, this work contributes to 

DT and to production control theories proving the 

possibility of enhancing the performances of production 

systems by acting on control methods through DT-based 

optimization. According to the achieved results in terms 

of WIP and TH, potential benefits for the industry include 
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the possibility to better fulfill the strategic logistic 

objectives related to cost and performances, as they are 

strongly influenced by production control methods. 

The main limitation of this work is related to the 

validation of its industrial applicability. The challenges 

of deploying such a complex production control protocol 

based on DT should be further analyzed through on-field 

studies.  

Future works should include the improvement of the 

optimization stability to grant fewer changes in WIP 

levels, to decrease system nervousness, and to possibly 

accelerate the optimization process by narrowing the 

solution search space. Moreover, the proposed 

framework shall be applied considering also different 

production control methods. An analysis of the main 

factors involved in this study could be relevant, and 

multi-objective optimization could be considered too. 

Finally, the deployment of the proposed method in a real 

factory should be seen as the real benchmark to assess 

new DT-based optimization models for production 

control. 
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