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Abstract: Compared to other data sources, demand time series are easily available in the industrial context. Providing accurate 
forecasts based on this kind of data for components with intermittent demand patterns is thus fundamental in many applications. 
Examples include optimizing inventory levels and the selection of the best tradeoff between holding and stockout costs in the 
spare parts management context. Recently, deep learning and machine learning models have been proposed to address this 
need. Compared to the more traditional ones, these methods better model nonlinear patterns in data. On the other hand, they 
require more effort in the parameter tuning phase, making it difficult to optimize at an item level in real life. In addition, relying 
only on single time series has some limitations. This study proposes a new approach based on a multivariate multi-output long 
short-term memory neural network to reduce time spent tuning and capturing interactions between different items' consumption 
data. The model is tested on a real spare parts dataset of a mechanical company. Croston's method and its variations, together 
with a multi-layer perceptron neural network, are used to compare the results. 
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I. INTRODUCTION 

Spare parts management has increasingly acquired 
relevance during the last decades, moving from the idea 
of a "necessary evil" to a source of potential profits. 
Empirical evidence has shown that spare parts margins 
are significantly higher than product margins [4]. 
Furthermore, managerial literature stresses the role of the 
spare parts business as a long-term revenue, a profit 
source, a lever for differentiation, and a source of 
knowledge on products and customers [8],[25]. 

Spare parts management involves many related areas, 
such as inventory control and spare parts forecasting 
[21]. In particular, accurate demand forecasting is crucial 
to inventory control [16] and requires specific attention 
in this field due to some peculiar characteristics. The first 
element of attention is the presence of a large portion of 
zero values and a significant variability among non-zero 
values in an item's consumption history (usually referred 
to as intermittent and lumpy demand). In addition, the 
ever-increasing number of parts managed and the high 
responsiveness required due to downtime costs by 
customers make forecasting in this field a complex matter 
[1]. Some practical implications of the previous problems 
can be found in [14] and [23]. In the former, authors 
analyzing a case study in the aerospace sector have to 
deal with about 30'000 items and state that a complete 
forecast for the demands of all components needs about 

330h. In the latter, it is estimated that a two-hour delay 
for an aircraft can cost an airline up to 150,000$.  

As a result of the complexity and relevance of accurate 
forecasts in this field, researchers have tested different 
methodologies in time. Recently, two main directions 
have been delineated: methods relying on time series data 
and methods that leverage contextual data often referred 
to as installed base information, such as maintenance 
schedules, equipment age, or operating conditions. Time 
series forecasting methods, in turn, can be divided into 
parametric and non-parametric ones. While demand is 
assumed to follow a hypothesized probability 
distribution in the former, the latter derives the lead time 
demand distribution from the data [24]. Within this last 
category, an increasingly investigated field concerns the 
use of neural networks (NN). NN is considered a versatile 
tool that can capture nonlinear patterns in data, such as 
intermittence and lumpiness, better than most time series 
methods [19], [2]. 

This paper extends the research on intermittent and 
lumpy time series forecasting with neural network and 
propose a new approach based on a multivariate 
multioutput long short-term memory neural network 
(MMO_LSTM). The model has been benchmarked 
against different Croston variations and the NN proposed 
in [22]. This new approach aims to make the most of 
time-series data by looking for hidden patterns between 
different items. In addition, the time for tuning aims to be 
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reduced as the model is able to deal with prediction on 
multiple components simultaneously. 

The rest of the paper has been organized as follows. 
Section 2 reviews previous neural network works in spare 
parts forecasting based on time series data and 
summarize the main research gap. Section 3 gives an 
overview on the theoretical background of methods 
implemented in the study. Original Croston and its 
variations are presented as they are object of the 
comparison in 3.A. The focus is then posed on the main 
building block on which the proposed model is based in 
3.B. In 3.C, the new proposed model is illustrated. 
Section 4 discuss the experimental setup and the case 
study. In the end, Section 5 and 6 present the results and 
conclusions, respectively. 

II. RESEARCH BACKGROUND 

A first paper using NN in the context of intermittent 
demand is [15], the authors proposed a Multi-Layer 
Perceptron architecture (MLP). One input layer (IL), one 
output layer (OL), and one hidden layer (HL) with three 
neurons (units) have been used. Twenty-four components 
have been studied with an average demand interval 
(ADI), computed as reported in [27], ranging from 3,38 
to 5,44. NN has been trained based on 624 daily historical 
consumption observations for each product. In contrast, 
the following 343 observations have been used to 
evaluate its prediction performance. Historical data has 
been organized to provide the model, for each of the time 
step t, the value of the demand at the end of the 
immediately preceding period (Dt-1) and the number of 
periods separating the last two non zero demand 
transactions as of the end of the immediately preceding 
period (INZt-1). Based on these values, the back-
propagation (BP) algorithm has been chosen as an 
optimization algorithm (OA) with a learning rate (LR) 
value of 0,1 to predict the value of demand transaction 
for the one-step ahead period (Dt+1). NN reports a mean 
absolute percentage error (MAPE) as computed in [12], 
ranging from 102% to 153%.  

Another MLP has been proposed by [22]. In this study, 
the same number of items, historical observations' length, 
number of layers and neurons, learning rate, and 
momentum factor of the previous work have been used 
on a dataset with an ADI ranging from 2,63 to 3,28 to 
predict Dt+1. In contrast to the previous work, the partition 
between training and testing has been set to 80-20% and 
the number of consecutive periods with no demand 
transaction immediately preceding the target period 
(ZCUMt-1) has been used in combination with Dt-1 to 
forecast the value of Dt+1. Values of MAPE ranging from 
95% to 145% have been founded.  

In [18], two different MLP configurations have been 
studied on a monthly consumption dataset of 1000 items. 
Both NNs have been trained on 36 observations, while 
the following 100 have been used for validation. For each 
time step, non-zero demand value (NZD) and inter 
demand intervals (IDI) have been provided as input 

considering different lags ranging from one time step 
back (t-1) to 3 times step back (t-3), and 1 to 3 neurons 
have been tested in the hidden layer. In the first model, 
called NN-DUAL, the prediction concerned the value of 
IDI and NZD at t+1, while the second model, called NN-
RATE, directly provided the demand rate (DRATE) at 
t+1. The Levenberg Marquardt (LM) optimization 
algorithm has been used for both models during 1000 
epochs. 

A different architecture based on Recurrent Neural 
Network (RNN) has been proposed by [3], 30 items have 
been considered, and 55 monthly historical observations 
have been used in the training phase. In contrast, 12 
observations have been reserved for the validation phase. 
One input layer, one output layer, one context layer, and 
one hidden layer have been adopted, and a number of 
neurons ranging from 1 to 15 have been tested in the 
hidden layer to find the best architecture. In addition to 
Dt-1, INZt-1, and ZCUMt-1, five more variables have been 
extracted from data and used as predictors for 
establishing the value of Dt+1: the number of consecutive 
periods with demand transactions immediately preceding 
the target period (NZCUMt-1), the number of periods 
between the target period and first non-zero demand, 
immediately preceding the target period (IFNZt-1), the 
number of periods between the target period and first 
zero demand, immediately preceding target period (IFZt-

1), the mean of demand for six periods immediately 
preceding the target period (DMEANt-6) and the 
maximum demand among six periods, preceding the 
target period  (DMAXt-6). BP with a learning rate of 0.01 
has been used as an optimization algorithm, and values 
of MAPE ranging from 51% to 165% have been 
estimated across all items. Still, no indication about the 
ADI value of the dataset has been provided.  

A different contribution has been offered by [19]. Here, 
three different architectures, respectively, a feed-forward 
(FF), a time delay (TD), and a recurrent neural network 
(RNN), have been compared on 24 items in the 
automotive sector. In the study, 61 to 76 weekly 
historical observations have been provided to forecast the 
future demand consumption for 1, 3 and 5 step ahead 
(Dt+1;t+3;t+5) in a dataset with ADI ranging from 1,18 to 
3,78. Recognizing the complexity of optimizing 
networks at an item level, due to the effort required for 
parameter tuning, the authors suggest using an Extreme 
Learning (EL) mechanism to simplify the procedure as 
the only parameters that need to be adjusted are the 
number of hidden neurons. A linear relationship between 
ADI  and MAPE has been found, with a latter value 
ranging from about 50% to about 120%. A summary is 
presented in Appendix A. 

  



XXVII Summer School “Francesco Turco” – «Unconventional Plants» 

Overall, the scientific literature on neural networks for 
intermittent and lumpy time series forecasting suggests 
some uncovered opportunities for further investigation. 
Except for the work [19], little attention has been posed 
to neural network implementations able to reduce the 
great amount of time that they require in the tuning phase. 
Clearly, a relevant problem if looking at the ever-
increasing number of spare parts that need to be 
managed. In addition, previous models based their 
prediction only on a single item's consumption history. 
However, forecasting based only on single time series 
has some limitations [6],[5],[10]. Considering the 
interactions between items and that they usually share 
some functional and technical similarities, some hidden 
patterns could be found by looking at multiple 
consumption time series simultaneously. On the one 
hand, the main novelty of this contribution is thus to 
propose a neural network model able to reduce time spent 
in tuning. On the other hand, the proposed data modelling 
phase aims to make the model investigate hidden patterns 
from the analysis of the interaction of multiple items' 
consumption time series. 

III. METHODS 

A. Croston 

Croston method [9] is one of the standard benchmarks for 
spare parts demand forecasting. He proposed an approach 
that made a separate forecast for the demand-interval (Pt) 
and the demand size (Zt). The forecast for demand per 
period (Dt) is then calculated as the ratio of the forecast 
for demand size and demand interval. The equations of 
Croston's method are the following: 

Z୲ାଵ =  αz୲ +  (1 −  α)Z୲ିଵ                                             (1)  

𝑃௧ାଵ =  𝛽𝑝௧ +  (1 −  𝛽)𝑃௧ିଵ                                           (2) 

𝐷௧ାଵ = 𝑍௧ 𝑃௧⁄                                                                       (3) 

Where pt is the actual value of time between consecutive 
non-zero transactions at the instant t and zt is the real 
value of the last non-zero demand at the end of the review 
period t. At the same time, α and β are smoothing 
parameters, and they are project choices. Over the years, 
many scholars have proposed modifications of Croston, 
such as those of [27] (SBA) and of [26] (SBJ). These 
modification results in correcting the value of Dt+1 
computed in (3) with different factors as follow: 

𝐷௧ାଵ =  𝑍௧ 𝑃௧⁄ ∗ (1 − 𝛽 2)⁄                                        (𝑆𝐵𝐴) 

𝐷௧ାଵ =  𝑍௧ 𝑃௧⁄ ∗ (1 − (𝛽 (2 −  𝛽))⁄                           (𝑆𝐵𝐽) 

 

B. MLP and LSTM neural network 

An extensive NN review can be found in [28]. As the 
authors state, one of the most widely used types of NN is 
Multi-layer perceptrons (MLP). MLP architecture can be 
seen as the sum of three different macro-layers, each with 
a specific number of so-called "neurons". The network 
architecture is also characterized by interconnections of 
layers that determine its behaviour. MLP and NN 

generally require a former training phase to learn hidden 
patterns inside data. In this phase, an historical training 
dataset is provided. As this dataset contains both the 
historical values of variables and the historical 
observations generated in the face of those variables, the 
model can learn the nonlinear relationship between input 
and output data. Technically speaking, the training phase 
consists in finding the right value of the variables W and 
b in the following formula: 

𝑌 = 𝑔((𝑋 ∗ 𝑊) +  𝑏))                                                      (4) 

Where X is the input tensor, W is the weight tensor, and 
b is the bias tensor. A tensor product is performed 
between X and W, and the resulting tensor is then added 
with tensor b. In the end, the so-called transfer function 
(g) is applied. Once the proper value of W and b has been 
determined in the training phase, operation (4) can be 
propagated from layer to layer to convert input data (X) 
into the final prediction. Once the training has been 
completed,  the model's prediction capability is evaluated 
on new input dataset, usually referred to as the validation 
dataset. 

MLP has shown remarkable performance in different 
fields; however, its learning mechanism gives it no 
memory. Different other NN variations have been 
proposed to process a sequence or a temporal series of 
data points and overcome this problem. Examples are 
recurrent neural networks [11]. One of the latest 
proposed architectures is the long short-term memory 
neural network (LSTM). The major innovation of LSTM 
(see Figure 1) is the presence of a memory cell ct able to 
accumulate state information. Different gates control 
operations like accessing, writing and clearing this cell. 
Every time a new input comes, its information will be 
accumulated in the cell if the input gate it is activated. 
Also, the past cell status ct-1 could be "forgotten" in this 
process if the forget gate ft is on. Whether the latest cell 
output ct will be propagated to the final state ht is further 
controlled by the output gate ot. One advantage of using 
the memory cell and gates to control information flow is 
that the gradient will be trapped in the cell and be 
prevented from vanishing too quickly, which is a critical 
problem for the previous models [17].  

 
Fig. 1. LSTM model [17] 

 

 



XXVII Summer School “Francesco Turco” – «Unconventional Plants» 

C. Proposed model: Multivariate Multi output LSTM 

As [13] stated, spare parts demand may depend on many 
factors, and relying only on past consumption might not 
be accurate. In addition, the high number of spare parts 
makes the tuning phase almost impossible at an item 
level [19]. Previous neural network works have 
emphasized architecture that minimizes the accuracy 
error or optimizes the tradeoff between holding and 
stockout cost. However, little attention has been posed to 
the aforementioned practical problems. The main novelty 
of this paper is instead that of proposing a model able to 
both reach good accuracy metrics and deal with the 
previous practical implementation issues.  

Keras library [7] has been used to implement the model. 
Keras is a high-level framework used to develop deep 
learning models. The adjective "deep" in the term deep 
learning means that the final model is obtained by 
stacking multiple models with different functions 
(usually referred to as layers). The proposed multivariate 
multi-output long short-term memory neural network 
(MMO_LSTM)  has been obtained by stacking an LSTM 
layer over an MLP layer. This last layer has a number of 
output neurons equal to the number of considered items. 
This configuration is thus able to exploit the LSTM 
capability of best analyzing time series data. In addition, 
the MLP layer allows obtaining multi-output propriety. 
In addition, previous models in literature deal with the 
prediction of a single item at a time and thus require a 
proper tuning phase for each item. The proposed model 
instead, provide an unique output prediction for all 
considered items. As a consequence the time spent in 
tuning phase and the number of different tuned models 
that need to be used could be reduced. 

Particular attention has been posed in data modelling 
phase with the objective of overcoming the limit of using 
single time series data. Previous literature have only 
relied on single items consumption history. However, 
components have interactions inside a final product and 
they usually share technical or functional similarities. As 
a consequence, prediction of an item's future 
consumption should be based not only on its single 
history but also looking at hidden pattern with the history 
of other items. In this paper the multivariate propriety of 
the proposed model has been designed to manage this 
issue. To do this, 3-dimensional input tensors have been 
projected. As figure 2 shows, items that share technical 
and functional similarities have been selected. Afterward, 
their historical time series consumption data were 
extracted from the ERP database. Subsequently, the 
historical time series has been split into two parts. In 
order to transform raw data into a format that the model 
can deal with, sliding windows have been used. The 
historical training predictors (X_train) and prediction 
(Y_train)  tensors have been built by applying a sliding 
window to the first part of the previous split time series. 
Instead, the validation predictors (X_val) and prediction 
(Y_val) have been built by applying sliding windows to 
the second split portion. To give an example of the 
sliding window mechanism, consider starting at timestep 

0 and considering, for example, a sliding window of 2 
timesteps. The first row of X_train contains historical 
observations ranging from time step 0 to time step 2. In 
Y_train, the value of the 3rd historical observation is 
stored. The second row of X_train contains two historical 
observations starting from time step 1, while in Y_train 
is stored the demand value at timestep four and so on until 
all rows are stored. The same thing happens for the X_val 
and Y_val, but as stated above, the second split portion 
has been used to build them. Repeating this procedure for 
each item, the X_train, Y_train, and the X_val, Y_val 
matrix has become 3D tensors able to capture interactions 
between different items' s consumption history. 

 
Fig. 2. Input data modeling process 

IV. CASE STUDY 

The proposed model has been applied to a real spare parts 
dataset of a mechanical company involved in the sector 
of machine tools. 138 mechanical collets with different 
internal and external diameters and different threads have 
been the object of the study. Their description of monthly 
ADI and CV2 [27] is provided in Table 2. 

TABLE 2 
ADI AND CV2 DATASET CLASSIFICATION 

 

 Min Mean Dev.std Max 

ADI 1,01 5,57 5,48 24 

CV2 0,33 6,34 6,58 32 

For each item, 96 monthly historical time series data 
points are used to train and validate the model. 
In particular, the first 72 observations are used as the 
training set, while the 24 remaining observations are used 
in the validation set. In the pre-processing data phase, a 
normalization procedure has been applied by subtracting 
to each data point the mean over the training set and 
dividing the result by the standard deviation. 

Except for the mentioned parameters, other parameters 
have been set to default values provided by the Keras 
library for LSTM and MLP layers. Different sliding 
window sizes (1-3-4-6-12) have been tested to build the 
input tensor, and according to the results, a sliding 
window of three has been chosen as reported the best 
results. The batch size has been set to 72, and the number 
of epochs has been set equal to 150'000 with the option 
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of early stopping training if for 300 consecutive epochs 
no improvements were found. RMS prop optimization 
algorithm has been used instead of the stochastic gradient 
descent algorithm. Different values for the learning rate 
have been tested (0.1-0.01-0.001-0.0001), and a value of 
0.001 has been chosen as has reported the best result. The 
mean absolute error has been used as a loss function. 

Original Croston, SBA, and SBJ variation and NN 
proposed in [22] have been compared on the validation 
dataset.  
The python package of [20] has been used to implement 
the Croston method and its variation. The parameters for 
the NN_MUK are set as reported in [22]. The NN_MUK 
has been chosen among other NN implementations as in 
[19] is the one that reports the best results.  

V. RESULTS 

To compare the performance of different models, mean 
absolute percentage error (MAPE) as proposed by [12] 
and the total time to train and evaluate the model has been 
computed for 138 items. Results are summarized in Table 
3.  

TABLE 3 
COMPARISON BETWEEN DIFFERENT MODELS 

 

 MMO 
LSTM 4 

NN 
MUK 

CRO SBA SBJ 

% Best 43,1% 15,3% 30,7% 6,6% 4,4% 

Mean 
MAPE 

116,1% 134,4% 167,7% 152,1% 148,3% 

Min 
MAPE 38,8% 37,6% 0,0% 33,4% 34,4% 

Dev.st 
MAPE 

50,2% 70,2% 152,9% 117,8% 106,1% 

Max 
MAPE 

415,3% 399,6% 959,8% 959,8% 959,8% 

Time 
(min) 

11,2 18,34 0,007 0,007 0,007 

The first row shows the percentage of times a model 
outperforms others in terms of MAPE. The second to 
fifth rows show respectively the mean, the minimum, the 
standard deviation, and the maximum value of MAPE 
across all items for each model. The third row shows the 
time models require to train and evaluate their 
performance for all items. Results show that 
MMO_LSTM outperforms other models 43,1% of the 
time, reduces the mean MAPE by 18,3 % with respect to 
NN_MUK, and is 63,8 %  faster than NN_MUK. The 
high MAPE's upper bound reported for all models is 
probably due to the huge extension of the ADI value of 
the studied dataset, as the same value is limited to 5,44 in 
previous mentioned literature.  

In addition, Figure 3 shows the correlation between the 
reported MAPE of Croston variations and that of the 
MMO_LSTM method and some characteristics of the 

dataset like the ADI and the CV2 value and the number 
of timestep with zero demand (NZD).   

 
Fig. 3. Dataset feature correlation with MAPE 

In the chart, the performance of the traditional method 
seems to be more conditioned by the variables mentioned 
above. Instead, the proposed model shows less 
dependence on them, remarking the possibility of 
achieving better results in context with high 
intermittences and lumpiness. 

VI. CONCLUSIONS 

Spare parts management has increasingly acquired 
relevance during the last decades, moving from the idea 
of a "necessary evil" to a source of potential profits. In 
addition, accurate forecasting plays an ever-increasing 
fundamental role in good inventory management. 

Forecasting based on time series is widely used due to 
easy data availability, and NN has been increasingly 
tested in this field. However, forecasting based only on 
single time series has limitations. Components have 
interactions inside a final product, and they usually share 
technical or functional similarities. Consequently, the 
prediction of an item's future consumption should be 
based not only on its single history but also on hidden 
pattern with the history of other items. In addition, NN 
requires time to be tuned, and optimizing this task at an 
item level is almost impossible with the ever-increasing 
number of items that need to be managed. 

In this paper a multivariate multioutput LSTM has been 
proposed and compared with different Croston variations 
and the NN proposed in [22]. The proposed model aims 
to overcome the problem mentioned above by looking at 
possible hidden patterns between the consumption 
history of different components and reducing the time for 
tuning as this task needs to be done for groups of items 
instead of single ones. 

The mean absolute percentage error and total time to train 
and evaluate the model have been computed for 138 
items with a mean ADI of 5,57 months. Results show that 
MMO_LSTM outperforms other models 43,1% of the 
time and is able to reduce the time for training and 
evaluating the model with respect to NN proposed in 
[22].  

In conclusion, even if the model can reach improvements 
in accuracy and computing time, values of MAPE higher 
than 100% have been founded both in literature and in 
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the study, remarking how challenging it is to make a 
forecast in the spare parts field also with modern 
technique. To address this problem and by looking at the 
limits of this paper, two future directions can be drawn. 
First, items have been grouped by looking at technical 
similarities, while providing a mathematical optimization 
procedure to the cluster creation could lead to 
performance improvements. In addition, this study 
considers only time-series data. Another option could be 
to consider different data sources, like the number of sold 
final products that adopts the studied spare parts, 
investigating thus information coming from the installed 
based. 
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