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Abstract:  The correct use of a rapid upper limb assessment is fundamental to prevent musculoskeletal disorders. Motion 

Capture (MOCAP) technologies are now being investigated for ergonomic risk assessment. One of the most commonly used 

technologies is depth cameras, in particular Kinects. Using version 3 of Kinects (Azure Kinect), we developed an application, 

named AzKRULA, for ergonomic risk assessment using a Rapid Upper Limb Assessment (RULA) to carry out a video analysis 

on an assembly task. We analysed 140 videos of an operator performing assembly and disassembly tasks thus enabling us to 

identify both a short-term and a long-term learning effect.  In addition, we found a negative correlation between the ergonomic 

risk and the learning curve which we believe should be investigated further. 
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I. INTRODUCTION 

Industry 4.0 has received considerable attention in the 

industrial production field [1] [2]. This revolution 

changed organizations and processes [3], as well as the 

way humans work [4]. Despite the continuous 

improvement in working conditions and robotization, 

human operators are still involved in various manual 

tasks since is difficult for robots to acquire soft skills and 

some specific competences [5].  In addition, more than a 

half of the tasks performed are short and repetitive [6], 

leading to work-related musculoskeletal disorders 

(WMSDs), i.e. “all musculoskeletal disorders that are 

induced or aggravated by work and the circumstances of 

its performance” [7].  As highlighted by the 6th European 

Working Conditions Survey, issues related to posture, 

involving repetitive hand and arm movements, are the 

most prevalent risks in Europe. Some 61% of workers 

have these issues, which play a key role in causing 

WMSDs [8]. In 2017, the US Bureau of Labor Statistics 

reported that in manufacturing 31.4% of time off work is 

caused by WMSDs [9]. In fact, WMSDs in the US have 

an estimated direct economic cost of USD 20 

billion/year, and up to five times more for indirect costs 

(e.g. hiring and training of replacement workers [10].   To 

protect health and welfare of workers, policies are needed 

that minimize the risk of WMSDs [11]. The first step is 

to evaluate risk exposure to factor and plan any 

ergonomic interventions [12] (i.e. workplace redesign).  

There are basically three main methods to carry out this 

evaluation: self-reports, direct measurements and 

observational methods [13].  Self-reports are by nature 

subjective [14]. Direct methods entail attaching sensors 

to the worker’s body, and these sensors are usually 

expensive, highly intrusive, and imprecise. Consequently 

usage of the third approach - observational methods - has 

increased considerably since 2005 [15], as confirmed by 

a large survey on ergonomics practitioners [16].  The 

most common observational methods are: Rapid Upper 

Limb Assessment (RULA) [17], Rapid Entire Body 

Assessment (REBA) [18], the NIOSH lifting equation 

[19], the Strain Index [20], the OVAKO Working Posture 

Analysing System (OWAS) [21], and the Concise 

Exposure Index (OCRA) [22].  However, all these 

methods have the same drawback: they require an 

ergonomic practitioner to evaluate postures with a video 

analysis. This analysis is usually time-consuming, is not 

very accurate, and suffers from high intra-and-inter-

observer variability [23]. To overcome these limitations, 

MOCAP technologies are now being use in ergonomic 
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assessments (see Section 2). In this context, we exploited 

a new  application for rapid upper limb assessment with 

Azure Kinect [24] in order to perform a video analysis of 

assembly tasks. Specifically, the analysis tried to find out 

whether there is a correlation between the ergonomic risk 

and the learning curve, i.e. whether the health risk 

decreases or increases with an increase in the learning 

curve obtained through repeating the same task many 

times. Importantly, we found that doing a task more 

efficiently actually increases the risk of health problems 

for the operator. The paper is structured as follows. 

Section 2 reviews MOCAP technologies in terms of 

ergonomic risk assessment. Section 3 outlines the theory 

on learning curves. Section 4 presents our experimental 

design, while Section 5 presents our results. In the final 

section we draw conclusions and suggest ways to further 

the research agenda.   

II. LITERATURE REVIEW MOCAP 

To eliminate the inherent weaknesses of observational 

methods, studies have integrated MOCAP technologies 

into ergonomic risk assessments (Manghisi et al., 2017) 

[25] [26]. MOCAP technologies are essentially sensor-

based or optical [27]. The main advantage of a sensor-

based MOCAP is that, unlike an optical MOCAP, there 

are no occlusions. However, a sensor-based MOCAP is 

usually highly intrusive since it is attached to the worker's 

body and is not particularly accurate [28], leading to 

limited applications in industrial sites. In fact, there have 

been few studies related to sensor-based MOCAP 

technologies. In [29] the authors exploited inertial 

sensors to calculate RULA and OCRA in warehouse 

activities, Pepponi et al. [30] employed inertial sensors to 

assess the RULA and Strain Index. Hsu and Lin [31] 

calculated RULA in agricultural activities. There are also 

challenges due the discomfort for the worker [32], which 

goes against the main objective of a human centred 

design [33].  On the other hand, optical systems are less 

intrusive and provide a valid solution for an ergonomic 

risk assessment (Manghisi et al., 2017). The most 

popular cameras are Kinects since they are a ready-to-use 

technology that provides a real time segmentation using 

the depth-RGB data that can be processed in real time 

using the software development kit provided.  The 

current generation of Kinect - the third - is called Azure 

Kinect c. Many studies have used Kinects for ergonomic 

risk assessments. For example, Diego-Mas et al. [34] 

calculated OWAS using Kinect v. 1 in a sequence of 

images with different postures and found a good 

agreement with an expert evaluation. Manghisi et al. 

(2017) developed a software application that semi-

automatically calculates RULA with a Kinect v. 2, which 

showed a good agreement with an expert, an optical 

motion capture system and with some commercial 

software based on Kinect v. 1 in the analysis of 15 static 

postures. Plantard et al. [35] calculated RULA from 

Kinect v. 2 data finding a substantial agreement with an 

expert evaluation in both the laboratory and a real 

working environment. Bortolini et al. (2018) utilized four 

Kinect v. 2 cameras, each connected to a dedicated 

personal computer to create a Motion Capture System 

(MAS) that captures segmentation data without one of 

the main drawbacks of depth cameras: the inaccuracy 

derived from occluded postures (Plantard et al., 2015).  

This inaccuracy was demonstrated in [36] where Kinect 

v. 2 was tested against an optical marker-based system 

and IMU, revealing that the RULA provided by the 

Kinect is less stable than the other two systems, but it can 

be used for an ergonomic evaluation in a working 

environment without severe occlusions.  These results 

were confirmed in a recent work [37], where Kinect v. 2 

showed a fair to moderate agreement in the RULA score 

provided with respect to a reference MAS made up of 

eight Vicon cameras due mainly to occlusion issues. 

Finally, Coruzzolo et al. (2022) developed an Azure 

Kinect based application for RULA calculation 

(AzKRULA) and tested it in comparison with an 

ergonomic expert and a machine vision algorithm based 

on simple RGB videos: they found a substantial 

agreement between the three solutions.  In this work, we 

exploited the new AzKRULA to carry out a video 

analysis of assembly and disassembly tasks. Specifically, 

for 7 working days an operator performed 10 assembly 

tasks and 10 disassembly tasks (on an IKEA bedside 

table) for a total of 140 videos recorded. We also 

modelled the learning effect of the operator with classical 

learning curves and tried to find a correlation between the 

ergonomic risk detected and the learning effect.   

III. LEARNING CURVES: MODELS AND APPLICATIONS 

When an individual performs an activity, this leaves a 

mark on their memory. The German psychologist 

Hermann Ebbinghaus was the first to investigate this 

aspect in his work [38]. Since that time, the effects of 

learning and forgetting have been studied in medicine, 

neuroscience, psychology, engineering, and many others 

[39]. Wright investigated learning effects in aircraft 

manufacturers and created a mathematical model for 

manufacturing contexts [40]. He observed, in an aircraft 

manufacturing facility, that the cost per unit decreases by 

a constant percentage while doubling the outputs.  

He quantified this decrease in the following log-linear 

model: 

𝑦(𝑥)𝑚 = 𝑦1 ∗ 𝑥𝑏     1) 

He was the first to use the effects of learning and 

forgetting to analyse production and operations. In the 

Wright Learning Curve (WLC) formula, 𝑦(𝑥)𝑚 

represents the cumulative average time (cost) to produce 

the 𝑥th quantity, 𝑦1 the time (cost) to perform the first 

unit, 𝑥 is the 𝑥th quantity, and 𝑏 represents the learning 

exponent: 

𝑏 = log(𝑝) log 2,⁄    𝑏 ∊ [−1; 0]   2) 

where 𝑝 is the Learning Rate (LR) and describes how the 

operator’s performance improves while increasing 

repetitions. Despite being rather simplistic, this model 

has been widely used in different contexts [41], and 

several researchers have tried to correct the model’s 
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limits. Crawford identified the output of Wright’s model 

not as an average value, but as the time, or cost, to 

produce the 𝑥th unit. De Jong proposed the introduction 

of a machine factor 𝑀 (0 ≤ 𝑀 ≤ 1) considering that a 

task’s fraction is executed by machinery [42]. Stanford-

B’s model incorporated prior worker experience (B) and 

quantified it by considering the number of units already 

produced by the operator [43]. Based on Yelle's model 

and the Stanford-B’s model, the S-curve model describes 

learning and forgetting effects when experience and 

machinery are part of the production [44]. The resulting 

formula maintained the original parameters of the 

previous model but added the machine contribution (𝑀) 

and the experience of the worker (𝐵): 

𝑦(𝑥) = 𝑦1[𝑀 + (1 − 𝑀)(𝑥 + 𝐵)𝑏]  3) 

One of the main limits of WLC is that when the quantities 

tend to infinity (or to a very large number), the time per 

unit (or cost per unit) tends to zero. To improve this 

aspect, we used Plateau’s model, which entails inserting 

a constant parameter C that represents the minimum 

value in terms of cost or time to produce one unit [45]. 

According to Blancett [46], learning curves are the most 

useful mathematical model to predict the production rate 

in repetitive operations.  In this study we decided to 

investigate the effects of learning and forgetting utilizing 

Wright’s, Crawford’s and Plateau’s models, given that 

the operator has no experience and there is no machinery 

involved in the assembly and disassembly processes. 

Several studies have found that the learning rate can vary 

across different firms and different sectors [47] [48] [49], 

and depends on the characteristics of the operators on the 

complexity of the task. In order to fit Crawford, Wright 

and Plateau’s models to the empirical data, we modified 

the LR in a classical regression. The mean square error 

(MSE) was then minimized to obtain the best fit between 

the models and the empirical data.  

IV. EXPERIMENT DESIGN 

The experiment was carried out over a period of seven 

working days during which a volunteer (male, 24 years 

old, 180 cm, 80 Kg) performed 10 assembly and 10 

disassembly operations per day to assemble and 

disassemble an IKEA bedside table. A total of 140 videos 

(375 minutes) were recorded by “Azure Kinect DK”. In 

order to have a standard and fixed height (110 cm) in each 

recording, the depth camera was mounted on an 

aluminium support structure with an average distance of 

220-250 cm from the subject. The camera was placed in 

order to capture the main part of the body that was the 

right one since the volunteer was right-handed. From 

now on we will refer to RULA as the RULA score of the 

right side of the body that was always visible to the 

camera and the most affected by repetitive movements. 

The Azure Kinect has been exploited with the following 

settings: Colour mode→ On 720p, Depth mode→ On 

NFOV 2x2 binned, No depth delays, Frames per second 

(fps)→15, IMU→ON, External sync→Standalone, Sync 

delay →0, Exposure→ Auto, Gain →Auto. In particular 

the NFOV 2x2 binned setting was used since was 

demonstrated to outperform previous version in terms of 

accuracy [50].  

The operations were completed on a 150x90x80 cm 

wooden worktable, equipped with a storage panel 

including objects such as screwdrivers, that the worker 

needed to execute the tasks, thus reproducing in a 

realistic way an operator’s workstation in an industrial 

field. The operations were performed in a controlled 

laboratory with a mean temperature of 23°C and a mean 

controlled illumination of 300 Lux. 

 

The volunteer assembled and disassembled an IKEA 

bedside table, “Lixhult” model, made up of two brackets, 

two side panels, upper floor, lower floor, one internal 

shelf, and four legs. The item’s components were placed 

on a shelf located 65cm in front of the workstation, as 

shown in figure below. Assembly and disassembly tasks 

were considered separately. The various processes 

consist of 12 phases each, where data were collected by 

Azure Kinect and processed with AzKRULA to extract 

the RULA evaluation at each frame, and then exported to 

Excel for processing and analysis to understand the 

learning curve.  

 

  

Fig. 1. Assembly station configuration. 

 

V. RESULTS 

To investigate how the volunteer increased his 

productivity over time and through repetition, 10 

repetitions per day were performed for each process. 

Simultaneously, the “Azure Kinect DK” recorded 

movements and postures. The results relating to the 

learning effect and the ergonomic risk are first presented 

separately and then analyzed together to investigate 

possible correlations. 

A. Performance Results 

During the tests, the volunteer carried out 12 tasks to 

complete the assembly, spending a time for the total 

assembly task in a range from 139 to 300 seconds with a 

mean value of 199 seconds and a standard deviation of 

39.20 seconds. The minimum time was reached in the 

sixth repetition on the seventh day.  The total disassembly 

time was much since was performed in 227 seconds in 

the worst case, and in 85 seconds at best, with a mean 

value of 135 seconds. Crawford’s, Wright’s and 

Plateau’s models were fitted for each day by minimizing 

the mean squared error (MSE). Secondly, the mean 
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average value was calculated every day in order to reveal 

the learning curve during the total period of the 10 days 

and eliminating any variability during individual days 

through the mean average value. On the first day of 

testing, the volunteer performed the assembly tasks in a 

range between 252 and 180 seconds, with an average 

time of 210.3. The highest value was achieved when 

performing the first assembly test, which took 19.83% 

more than the average time needed on the same day. 

Subsequently, predictions extrapolated from Wright’s, 

Crawford’s and Plateau’s models were calculated and are 

shown in Figure 2. 

 

 

Fig. 2. Fitted Models for the assembly times in the first day 

 

Plateau’s and Crawford’s models were the ones the fitted 

the data best. Plateau’s model had the lowest MSE, as 

reported in Table 1 where the MSEs of all the models are 

reported for each day. 

TABLE I 
MSE FOR WRIGHT, PLATEAU AND CRAWFORD MODELS FOR THE 

ASSEMBLY DURING DAYS 

  MSE: Wright MSE: Plateau  MSE: Crawford 

Day 1 342.65 335.54  367.05 

Day 2 12,666.07 644.92  888.90 

Day 3 1,222.25 1202.96  1202.96 

Day 4 11292.76 826.80  5790.32 

Day 5 686.84 670.74  715.02 

Day 6 393.94 323.82  659.89 

Day 7 452.42 383.02  383.89 

 

As Table 1 shows the best model to fit the learning 

process in the assembly task in each day respect to MSE 

was always the Plateau’s.  

The results obtained by monitoring the assembly task 

times performed during the seven days could highlight 

some interesting aspects: 

✓ For the whole period, completing the first assembly 

task took longer time than the last one on the same day. 

This reveals a “short-term” learning effect due to 

improved performance by the operator over the course of 

the day. 

✓ The completion times for the first task of the day were 

longer than those recorded in the last test of the previous 

day. This indicates that although the worker improved 

during the course of a day, at the beginning of the next 

day this improvement had already been lost, i.e. the 

experience gained in completing the task on the previous 

day had already been forgotten in a forgetting phase 

between days.  

✓ The average times recorded in the last three tests on 

each day were always shorter than both the average time 

for the first three tests and overall average time of 

reference day, reinforcing the intra-day learning 

✓ The highest completion time was recorded for the first 

test on the second and on the fourth day, while the 

minimum value was recorded for the sixth test of the last 

test day. Despite the phases of forgetting, described at the 

second point, between several days, therefore, there also 

seems to be a "long-term" learning phase. 

Figure 3 shows the Plateau models fitted for each day of 

testing, since this was the best model to fit the real data 

from all seven days. Figure 3 shows that the Plateau 

models for the last two days are significantly lower than 

the others thus indicating that there is long-term learning 

effect. Figure 3 also highlights the short-term learning 

effect in each day and the forgetting effect in subsequent 

days.  

 

 

Fig. 3. Fitted Plateau models for the assembly during days 

 

Very similar results were found for the disassembly 

phase. In fact, for the disassembly task the Plateau model 

was again the one that best fitted the data for each day 

and the same learning effect during the day, the forgetting 

between days and the long-term learning phase were 

detected. 

B. Rula results 

The ergonomic index, RULA, was calculated through 

AzKRULA an application developed and described in 

detail in our previous paper (Coruzzolo et al. 2022). 

TABLE II 
RISK LEVEL AND ACTION LEVEL FOR RULA 
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The RULA score comes from an assessment grid which 

is filled in using joint angles. It separates the human body 

into two sections: Section A - upper arm, lower arm, and 

wrist; Section B - neck, trunk, and legs. For each joint in 

each section a series of principal factors, based on the 

joint angles, along with secondary factors (e.g., 

abduction or trunk twist) are evaluated and integrated 

into a score (Lynn and Corlett, 1993). The final RULA 

score ranges from 1 to 7. It is classified into four levels 

of actions required to reduce the risk of injury for an 

operator [17] as reported in Table 2.  

Not all the retrieved joints were needed to calculate the 

angles for the RULA score. However, additional  

 processing was required on the retrieved joints to create 

the geometrical structures needed.   

We followed the procedure developed by Manghisi et al. 

(2017) modifying it accordingly with the new joints 

provided by Azure Kinect (with respect to Kinect v. 2) 

exploiting the Azure Kinect SDK for retrieving joints. 

Then, AzKRULA calculates the RULA for each frame of 

each video analysed. RULA is semi-automatic since 

some manual inputs are needed.  In fact, for the leg score, 

we carried out a manual evaluation like we had done for 

muscle and force factors. For all these manuals evaluated 

factors default values are used. However, with respect to 

the RULA calculation with Kinect v. 2 developed by 

Manghisi et al. (2017), who did a manual evaluation of 

the neck twist, our application calculates it automatically 

thanks to the new joints tracked by the Azure Kinect in 

the head area (Tölgyessy et al., 2021).  The video was 

recorded in 15 fps, calculating the RULA score for each 

frame, and reporting a mean value for each second. The 

RULA scores in the first assembly day are reported in 

Figure 3. As Figure 4 shows all the cycles reach a plateau 

for a RULA score of 3, which corresponds to a low risk. 

However, there are some peaks, for example in the first 

day in cycles 6 and 1, where the RULA score has the 

maximum value possible, 7 (i.e. a risk that requires an 

immediate intervention). From the same data regarding 

the other seven assembly days, we calculated the mean 

RULA for each assembly repetition in each day. The 

results are shown in Figure 5. 

  

 

Fig. 4. RULA scores in the first assembly day 

 

 

Fig. 5. Mean RULA scores in the assembly tasks for each repetition 

during days 

 

The mean RULA score for the different repetitions in the 

various days seems to follow the same trend, with lower 

values in the intermediate repetitions. The same 

calculations were made for the disassembly, with very 

similar results which are not reported for the sake of 

brevity.  

 

C. Learning and RULA 

The last phase of our results analysis regards the relation 

between learning and RULA. Specifically, we 

investigated the correlation between the learning curve 

and the ergonomic risk in the assembly and disassembly 

tasks. We only considered the long-term learning curve 

by calculating the correlation between the mean 

assembly (disassembly) time per day with the mean 

RULA score in the same day during that task. The data 

with the mean assembly-disassembly time per day and 

the mean RULA in each of the task for each day are 

reported in Table 3. Table 3 shows that the long-term 

learning curve already detected since both the mean 

assembly and disassembly times follow a decreasing 

trend among days. We then calculated the coefficient of 

correlation between the mean assembly time and the 

mean RULA during this assembly task, which resulted in 
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a negative correlation of -0.29, and was -0.31 for the 

disassembly. The correlation between the two factors was 

not strong (-0.30) and was very similar for the two cases.  

This is an interesting result that highlights how by 

decreasing his performance time in the assembly and 

disassembly tasks (and thus increasing his performance) 

the volunteer actually increases the ergonomic risk to 

which he is subjected to.  

 

TABLE III 

MEAN ASSEMBLY AND DISASSEMBLY TIME AND RELATIVE MEAN 

RULA FOR EACH DAY 

 

This effect can be explained by the fact that to increase 

his performance, the volunteer made more extreme 

movements both from a joint angle and frequency 

perspective. In addition, the fact that a very similar 

correlation was found between the ergonomic risk in both 

the assembly and disassembly, reinforces these findings. 

VI. CONCLUSIONS 

We have presented an experimental study where we 

exploited a MOCAP-based application for the semi-

automatic evaluation of the RULA ergonomic risk index 

[24]. The experiment covered seven days of testing 

where in each day a volunteer performed ten assembly 

and ten disassembly tasks related to an IKEA bedside 

table at a workstation for a total time of 375 minutes. The 

first part of our analysis related to the learning curve and 

the second to the ergonomic risk. The results we found 

are the following: 

➢ Short-term learning: we fitted three different models 

minimizing the MSE for each day and found that the 

Plateau learning curve was the one that best fit the short-

term learning process during each day both for the 

disassembly and disassembly tasks. 

➢ Long-term learning: we found a long-term learning 

effect  through the course of the experiment, but which 

was hindered by a forgetting phase between days. This 

was demonstrated also by comparing the various plateau 

models through the days as shown in Figure 3.  

➢ Ergonomic risk: for the RULA score we found a 

plateau value in each repetition was near to three and 

similar scores between the various days coupled with 

some peaks at the highest ergonomic risk possible. 

In addition, we investigated a possible correlation 

between the ergonomic risk and the learning effect. We 

studied it in terms of long-term learning by calculating 

the correlation between the mean assembly (disassembly) 

time per day with the mean RULA score in the same day 

during that task. We found a negative correlation (around 

-0.30) between them which was very similar both for the 

assembly and disassembly tasks. This negative 

correlation highlights how by increasing his performance 

by reducing the task time the volunteer was subjected to 

higher ergonomic risks. This result is explained by the 

fact that to increase his performance the volunteer made 

more extreme movements from a joint-angle perspective.  

Future extensions of our work could include the 

following aspects to confirm our findings: 

➢ Extensive experiments with a panel of volunteers of 

different ages and physical characteristics. 

➢ Different tasks with respect to assembly/disassembly 

and different ad hoc ergonomic risk indexes, e.g., picking 

and the NIOSH index. 
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