
XXVI Summer School “Francesco Turco” – Industrial Systems Engineering

“A heuristic algorithm based on routing decisions for the No-
Wait Flexible Job-Shop scheduling problem”

Domenico Daniele Nucera*, Elisa Negri*, Luca Fumagalli
*

* Department of Management, Economics and Industrial Engineering of Politecnico di Milano, Piazza Leonardo da
Vinci 32, 20133 Milan – Italy (domenico.nucera@polimi.it– corresponding author -, elisa.negri@polimi.it,

luca1.fumagalli @polimi.it

Abstract: In the field of Scheduling Optimization, the Job-Shop scheduling problem entails a high level of complexity and is
often solved with the aid of metaheuristic algorithms. In its Flexible version it is possible to choose the machine which will
execute a specific operation. In this scenario both the scheduling and the routing problem need to be solved when aiming to
optimize the production makespan. Many optimization approaches account for the routing decision by encoding it in addition
to the job ordering, to let the metaheuristic algorithm account for this decision. The No-Wait Flexible Job-Shop is a variant
of the problem characterized by consecutiveness constraints among operations, which need to start directly after the previous
one's completion time. These constraints can be encountered for example in the pharmaceutical and metallurgic sector. In
this context Timetabling Algorithms are used to decode the solution and provide a makespan given a schedule. In this paper,
an approach to exploit the Timetabling Algorithm routing capabilities is discussed, in order to investigate which decision level
of the optimization procedure shall execute the routing selection. Finally, possible experimental settings to validate the most
convenient routing strategy are discussed.

Keywords: “No-Wait”, “Flexible Job-Shop”, “Routing”, “Timetabling”, “Scheduling

1. Introduction

Scheduling optimization is often one of the hardest tasks in

an industrial facility. Often in this domain decision-making

requires support from computational tools, which can

require an ad-hoc implementation according to the

production system’s characteristics. One of the most widely

adopted performance measures for a schedule is

represented by the makespan, i.e. the latest instant of

completion among all jobs, and most scheduling execution

problems involve its minimization.

Among scheduling problems, the Job-Shop (JS) scheduling

problem involves a product required to be processed by

several resources along a predefined path, and it is known

to be NP-Hard (Garey, Johnson and Sethi, 1976). The

Flexible Job-Shop (FJS) allows operation of a job to be

processed by possibly more than one resource in the

problem. Every operation is thus characterized by a subset

of the available resources which are entitled to execute it.

While the JS scheduling problem entails the ordering of the

jobs, in the FJS the optimization procedure also requires

selecting, for each operation, which one of the allowed

resources shall process it. The routing among resources

becomes thus a part of the optimization procedure,

involving an additional decision level to the sequencing one

(Pezzella, Morganti and Ciaschetti, 2008).

According to (Brandimarte, 1993), approaches to solve the

FJS scheduling problem can be categorized as:

• Concurrent, which are based on the idea of solving

the routing and scheduling problems at the same

time.

• Hierarchical, in which different problems are

solved in separate phases. Among the most

frequently adopted, a first stage is aimed at solving

the routing problem, and then sorting its related

sequencing problem. This decomposition is

driven by the fact that once a resource selection is

performed, the problem reduces to a JS.

The No-Wait constraint imposes each operation to be

executed directly after the previous one. Any time interval

between consecutive operations would result in a violation

of the No-Wait constraint. This constraint characterizes

production systems that can be found in the metallurgic

(Aschauer et al., 2017) and pharmaceutical (Raaymakers

and Hoogeveen, 2000) sector, just to make a few examples.

A No-Wait Flexible Job-Shop (NWFJS) is thus a

scheduling problem in which a Job-Shop has the No-Wait

constraint between its consecutive operations, which can

be executed by a resource selected from a subset. Every

XXVI Summer School “Francesco Turco” – Industrial Systems Engineering

operation thus possesses its own subset of resources

capable of executing it.

When solving No-Wait scheduling problems, a common

approach is to decompose the problem into a sequencing

and a timetabling one (Macchiaroli, Mole and Riemma,

1999). The sequencing part is often solved by applying a

metaheuristic algorithm to search the solution space. A

Timetabling Algorithm is then applied to decode the

solutions by obtaining their makespan.

However, for the NWFJS no relevant contribution

determines if a concurrent or hierarchical approach would

be better. A comparison of different strategies is in fact

missing in the literature, as we will see in the proceedings

of this work. While in fact several works treat the FJS

scheduling problem, the NWFJS lacks relevant benchmarks

suggesting which approach, hierarchical or concurrent,

should be followed. To overcome this gap, our work will

present a hybrid approach to the solution of the NWFJS

scheduling problem when the processing time of the

operations does not depend on the selected resource. The

hybrid approach can be used to gather insights on the best

approach for the NWFJS scheduling problem. The

proposed approach is based on a Timetabling Algorithm

capable of determining the resources path allowing the first

possible entry point for a job. Then we will present an

encoding to couple the Timetabling Algorithm proposed

with a meta-heuristic search algorithm capable of

leveraging the hybrid approach proposed in order to

inspect which component of the optimization procedure

shall select the routing among resources.

In Section 2 we will briefly review previous works on the

topic, with the problem being formally described in Section

3. In the end Section 4 will present the proposed approach.

2. Previous works

In this section we will go through previous works on the
topic. In the first part, we will cover works regarding the
FJS, with a second one concentrated on the NWFJS
scheduling problem.

2.1 FJS works

The FJS scheduling problem possesses a vast literature. In

(Xie et al., 2019) several works are mentioned and
discussed. In the following, we will consider some selected
works according to the relevance for our investigation.
(Brandimarte, 1993) presented a hierarchical approach
based on a two-stage Tabu Search, exploiting the
disjunctive graph representation to let neighbourhood

functions act on operations on the critical path. (Mastrolilli

and Gambardella, 2000) presented concurrent
neighbourhood functions still leveraging the disjunctive
graph representation, and then presented a Tabu Search
algorithm exploiting them. Subsequent works concentrated

on the problem encoding. (Pezzella, Morganti and

Ciaschetti, 2008) proposed a hierarchical approach, based
on a Genetic Algorithm with an encoding considering both
operations sequencing and routing selection. The algorithm
employs different strategies for initializing the population.

(Zhang, Gao and Shi, 2011) and (Al-Hinai and

ElMekkawy, 2011) proposed improved strategies for
generating initial solutions, while proving their Genetic
Algorithm to be better than already existing solutions.
Their works showed the importance of providing to the
metaheuristic search algorithm a proper initial population.

(Fumagalli et al., 2018) treated the accurate representation
of a production system in order to solve an application case
of FJS scheduling problem. In that work, attention was
posed in modelling the production system and defining
duties for both decision levels, the metaheuristic and the

simulation one. In (Chen et al., 2020) a strategy based on
Reinforcement Learning is proposed to select crossover
and mutation probabilities. The proposed approach
resulted in a performance improvement on most instances
from (Brandimarte, 1993).

2.2 NWFJS works

A limited amount of works in the literature is dedicated to
the NWFJS.

The first known contribution is from (Raaymakers and

Hoogeveen, 2000), in which a production system allowing
overlapping operations is considered. In this work the
processing time of each operation is independent of the
chosen machine, and the neighbourhood function
performs resources assignment taking into account their
load. A Simulated Annealing algorithm is used to search the
solution space, and its performance is tested against several
dispatching rules on a benchmark based on an industrial
case.

(Sundar, Suganthan and Chua, 2013) employs an Artificial
Bee Colony to search the solution space of NWFJS in
which an operation’s processing time depends on the
assigned resource. In the work, a solution is encoded by
means of job ordering and machines assignment, in a way

similar to (Pezzella, Morganti and Ciaschetti, 2008). The
algorithm is executed on instances derived from
(Brandimarte, 1993). The resources assignment is thus
determined by the meta-heuristic algorithm, which gives
preference to resources implying the minor processing time
for a given operation.

In (Aschauer et al., 2017), a Tabu Search is used for
sequencing jobs, while resources assignment is performed
by the Timetabling Algorithm. The processing time of each
operation is not determined a priori of the schedule, but its
minimum and maximum durations are provided as an input
to the problem. In the work, the algorithm is compared
against construction heuristics on instances coming from
an industrial case.

(Pei et al., 2020) present a Column Generation based
approach for a proportionate two-sage NWFJS, in which
every job is composed by two operations, involving two
different production stages. Both operations of the same

XXVI Summer School “Francesco Turco” – Industrial Systems Engineering

job are considered to have equal duration. The adopted
approach is interesting, but the limitations of the problem
tackled represent a distance from multiple application
cases.

2.3 Literature gaps

As it emerges from the review, the field of NWFJS
scheduling optimization lacks a literature as consistent as
the one of the FJS. In this context, there is a lack of
evidence on which approach, concurrent or hierarchical,
can lead to the best results. In our work we will thus
propose an experimental strategy to investigate this aspect
of NWFJS scheduling optimization. The assumption of
processing time independent from the routing assigned
seems reasonable from the practical point of view, since the
only two presented application cases of NWFJS, i.e.

(Raaymakers and Hoogeveen, 2000) and (Aschauer et

al., 2017) consider the processing of an operation time
unrelated with the machine selection.

3. Problem description

In this work we consider a NWFJS with 𝑛 jobs 𝐽1, … 𝐽𝑛 and

𝑚 resources 𝑅1, … , 𝑅𝑚. Each job 𝐽𝑖 shall be composed by

𝑛_𝑜𝑝𝑖 operations 𝑂𝑖,1, … , 𝑂𝑖,𝑛_𝑜𝑝𝑖
. Each operation 𝑂 shall

be characterized by a subset of resources capable of
executing it. Each operation is characterized by a

processing time 𝑝𝑖,𝑗 , being 𝑖 and 𝑗 respectively the indexes

of the job and of the operation inside the job. All the
operations of a job have to be executed respecting the
predefined sequence, and no operations are allowed to
overlap. Between each operation of a job the No-Wait
constraint applies, meaning that each operation has to be
executed after the previous one without any idle time in
between. In this situation, the starting time of a job could
need to be delayed for ensuring that every operation can be
executed without having to wait for any resource (Pinedo,

2012). Considering 𝑠𝑖,𝑗 as the starting instant of an

operation 𝑂𝑖,𝑗 , the following condition is imposed:

𝑠𝑖,𝑗+1 = 𝑠𝑖,𝑗 + 𝑝𝑖,𝑗 ∀ 1 ≤ 𝑖 ≤ 𝑛, ∀ 1 ≤ 𝑗 < 𝑛_𝑜𝑝𝑖

Our objective is to minimize the total production
makespan, defined as:

𝐶𝑚𝑎𝑥 ∶= max (𝑠𝑖,𝑛𝑜𝑝𝑖
+ 𝑝𝑖,𝑛𝑜𝑝𝑖

) ∀ 1 ≤ 𝑖 ≤ 𝑛

4. Experiment Proposal

In this section we will cover the design of the
experimentation to inspect if and how a concurrent
approach could benefit the solution of the NWFJS
scheduling problem above described. In the following a
Timetabling Algorithm aimed at selecting the routing of a
job’s operations in order to anticipate as much as possible
the insertion of a job of will be presented. Then a decoding
strategy capable of exploiting the Timetabling Algorithm
will follow. Finally, in order to evaluate the performance of

a concurrent approach with respect to the hierarchical one,
possible strategies will be presented.

4.1 Adopted Timetabling Algorithm

To implement the proposed concurrent approach, it is
necessary to have a Timetabling Algorithm capable of
generating a routing according to the insertion necessities
of a job. We are in fact interested in obtaining the optimal
insertion for every job. Once a routing decision is executed,
the subsequent NWJS insertion problem can be
approached by inserting each job at the available instant.

Without a predefined routing already imposed, we need a
Timetabling Algorithm dynamically able to select the
resources in order to anticipate as much as possible the
insertion point. In this way, the routing selection can be
considered in function of the job insertion. We thus employ
a Timetabling Algorithm which considers all the resources
allowed for an operation and selects the one guaranteeing
the first possible insertion for the given job, considering the
previous jobs as already scheduled.

Figure 1: Time entry instants example.

Given an operation 𝑂𝑖,𝑗 and a resource 𝑅𝑘, we consider

𝑇𝑖,𝑗
𝑘 as the set of time instants in which job 𝐽𝑖 could start its

execution guaranteeing that the operation could be
executed on that machine. An example can be seen in
Figure 1, in which a job is composed by two operations,
and considering availabilities of resource 2 the set of time
instants in which the job can start is depicted, guaranteeing

that its second operation is executed on the resource. 𝑇𝑖,𝑗

represents the set of time instants in which the job 𝐽𝑖 could
be executed guaranteeing proper execution of operation

𝑂𝑖,𝑗 on any of the available resources. If a resource 𝑅𝑘 is

selected a priori for an operation 𝑂𝑖,𝑗 , then for the

Timetabling Algorithm the following condition will hold:

𝑇𝑖,𝑗 = 𝑇𝑖,𝑗
𝑘

Otherwise, the following expression shall be considered in
order to indicate the set of time instants in which a job can
be executed guaranteeing an operation’s correct execution:

𝑇𝑖,𝑗 = ∪𝑘 ∈ {1,…,𝑚} 𝑇𝑖,𝑗
𝑘

In the above expression, for a resource not entitled to
execute a given operation the corresponding set of time

XXVI Summer School “Francesco Turco” – Industrial Systems Engineering

instants shall be an empty set. From these considerations,
we determine a job’s starting instant:

𝑠𝑡𝑎𝑟𝑡(𝐽𝑖) = min (∩
𝑘 ∈ {1,…,𝑛𝑜𝑝𝑖

}
𝑇𝑖,𝑗)

This formulation allows to conceive the mechanisms
required for the proposed Timetabling Algorithm to
perform job insertion and routing at the same time. In case
more than one resource guarantee the feasible execution of
an operation at a given job insertion time instant, then the
one with the smallest index is selected.

4.2 Solution Encoding

To properly represent a solution for our experiment, an
encoding is needed. Two main requirements can be
defined:

• The opportunity for an evolutionary algorithm to
interact with the routing subproblem.

• The capability to relax for certain operations the
routing imposed, thus letting the timetabling
algorithm free the select a resource according to
insertion necessities.

To obtain this, we start from the encoding proposed in

(Pezzella, Morganti and Ciaschetti, 2008) and (Sundar,

Suganthan and Chua, 2013), in which both sequencing
and routing selection are represented. In particular we will
refer to the latter representation, in which a sequence
vector determines the job order, while every operation is
characterized by the index of the resource which will
account for its execution.

In this work, we are going to introduce a concurrent index, i.e.
an encoding used to let the timetabling select the resource
for a specific operation in order to anticipate the insertion
point of the job it belongs. To better understand the
proposed encoding, we can consider the following
example, in which we denote the concurrent index as NA:
we have three jobs and three resources, with the encoding
for the jobs represented in Figure 2.

Figure 2: Example of encoding.

The three jobs are already sequenced, with a routing

selection assigned for every operation but 𝑂3,2, which in

our example can be executed on either resource 𝑅1or 𝑅2.
When decoding this solution to obtain a makespan, the
timetabling algorithm will select among the two resources
the one guaranteeing the first insertion point for the third
job. The depiction of the Gantt chart resulting from the

decoding can be seen in Figure 3, with both possible
routings depicted.

Figure 3: Gantt chart for the decoding of the example.

The timetabling algorithm will evaluate the use of both

allowed resources, resorting to the use of 𝑅2 to finally
anticipate the entry point of the job. Notice that once the

third job is inserted using resource 𝑅2, in case subsequent
jobs would have been present in the encoding, they would
have had to consider the occupation of resources resulting
from its allocation. Also, it would have been possible to
allow for more than one operation in a single job to have
the concurrent index, providing more choices to the
timetabling algorithm.

4.3 Performance Evaluation

To evaluate if letting the Timetabling Algorithm route a
portion of the operations can be beneficial, it can be
convenient to define a concurrent operator, i.e. a variation of
commonly used mutation operators adopted in most
solutions. Certain approaches evolve individuals by
randomly selecting a resource for a specific operation. This
assignment can be influenced by factors like machine loads
or processing times. When such a random choice has to be
made, we introduce a concurrent operator with probability

𝑝𝑐 , meaning that with probability 𝑝𝑐 the resource selection
result will be the concurrent index, thus letting the
Timetabling Algorithm with the freedom to select the
resource for the given operation. Given the concurrent

operator, varying levels of 𝑝𝑐 can be used to inspect the
effectiveness of the concurrent strategy based on routing
selection provided by the Timetabling Algorithm.

In the following, we will present possible strategies to
evaluate the impact of the concurrent operator, and thus of
the Timetabling Algorithm presented:

• Initialization Evaluation: certain choices in the
initial population generation can benefit the

performance of a search algorithm (Al-Hinai and

ElMekkawy, 2011; Zhang, Gao and Shi, 2011).
The proposed Timetabling Algorithm can be used
to randomly generate initial populations by
applying the concurrent operator. In the original

XXVI Summer School “Francesco Turco” – Industrial Systems Engineering

encoding it is then possible to replace the
concurrent index with the resource selected by the
Timetabling Algorithm. The initial population
thus generated can be provided to a subsequent
metaheuristic algorithm, whose performance
could be used as an indicator of the usefulness of
such approach.

• Survival Evaluation: an evolutionary algorithm
like a Genetic Algorithm employs selection
operators to preserve the fittest individuals of a
population and use them to continue the search.
While applying the concurrent operator, it would
be possible to monitor the survival rate of
individuals characterized by the presence of the
concurrent index. Survival of such individuals
would suggest the benefit of letting the routing
selection being handled by the Timetabling
Algorithm.

• Performance Evaluation: one of the simpler and
clearer approaches to evaluate the benefit of the
proposed concurrent approach would be to run a
meta-heuristic search algorithm with varying

values of 𝑝𝑐 . A value of zero for the above
mentioned parameter would imply a fully-
hierarchical approach for the solution of the

NWFJS scheduling problem. Varying values of 𝑝𝑐
in different executions of the search algorithm can
suggest if the proposed concurrent approach can
be useful for the solution of the NWFJS
scheduling problem.

• Reinforcement Learning Driven Evaluation: the
approach mentioned above could be extended by
adopting a Reinforcement Learning algorithm for
the selection of parameters characterizing the
search algorithm, among which the concurrent

operator probability 𝑝𝑐 . This strategy was used in

(Chen et al., 2020), and the power of the policy
learning of the Reinforcement Learning algorithm

could be exploited to inspect if values of 𝑝𝑐 bigger
than 0 can benefit the search procedure.

5. Conclusion

We have seen a hybrid approach to investigate if a
concurrent or hierarchical solution methodology would
benefit more the NWFJS scheduling problem. This results
in a methodology that can be used in multiple scenarios
characterized by No-Wait constraint to evaluate the most
performing routing approach. The hybrid approach
proposed could be considered also a solution strategy in
itself. While in fact a representation accounting for routing
decisions is necessary for the optimization procedure, a
search algorithm could benefit from an integration with the
heuristic of letting the Timetabling Algorithm procedure
select resources to anticipate the insertion of a job. While
there is a gap between research on the FJS scheduling
problem and its counterpart characterized by the No-Wait
constraint, advancements in techniques like Optimal Job

Insertion (Bürgy and Gröflin, 2017) and Reinforcement

Learning (Chen et al., 2020) can possibly be exploited to
reduce the gap in solving such scheduling problem. The
introduction of IT technologies at the shop floor, leading
to the paradigm of the Cyber-Physical System, can possibly
lead to the inclusion of real-time information coming from

the resources in the scheduling framework (Negri et al.,

2020; Ragazzini et al., 2020). In this paradigm, insights
coming from the shop floor could be integrated in the
scheduling process, leading to new heuristics and hybrid
algorithms for optimization. Possible future works could
regard the implementation of a tool to produce
computational experiments, in order to apply the proposed
methodology in the evaluation of possible routing
strategies for NWFJS scheduling scenarios.

References

Al-Hinai, N. and ElMekkawy, T. Y. (2011) “An efficient
hybridized genetic algorithm architecture for the flexible
job shop scheduling problem,” Flexible Services and
Manufacturing Journal, 23(1), pp. 64–85.

Aschauer, A. et al. (2017) “An efficient algorithm for
scheduling a flexible job shop with blocking and no-wait
constraints,” IFAC-PapersOnLine, 50(1), pp. 12490–12495.

Brandimarte, P. (1993) “Routing and scheduling in a
flexible job shop by tabu search,” Annals of Operations
research, 41(3), pp. 157–183.

Bürgy, R. and Gröflin, H. (2017) “The no-wait job shop
with regular objective: a method based on optimal job
insertion,” Journal of Combinatorial Optimization, 33(3), pp.
977–1010.

Chen, R. et al. (2020) “A self-learning genetic algorithm
based on reinforcement learning for flexible job-shop
scheduling problem,” Computers & Industrial Engineering,
149, p. 106778.

Fumagalli, L. et al. (2018) “A novel scheduling framework:
Integrating genetic algorithms and discrete event
simulation,” International Journal of Management and Decision
Making, 17(4), pp. 371–395.

Garey, M. R., Johnson, D. S. and Sethi, R. (1976) “The
complexity of flowshop and jobshop scheduling,”
Mathematics of operations research, 1(2), pp. 117–129.

Macchiaroli, R., Mole, S. and Riemma, S. (1999)
“Modelling and optimization of industrial manufacturing
processes subject to no-wait constraints,” International
Journal of Production Research, 37(11), pp. 2585–2607.

Mastrolilli, M. and Gambardella, L. M. (2000) “Effective
neighbourhood functions for the flexible job shop
problem,” Journal of scheduling, 3(1), pp. 3–20.

Negri, E. et al. (2020) “Field-synchronized Digital Twin
framework for production scheduling with uncertainty,”
Journal of Intelligent Manufacturing, pp. 1–22.

Pei, Z. et al. (2020) “A column generation-based approach
for proportionate flexible two-stage no-wait job shop

XXVI Summer School “Francesco Turco” – Industrial Systems Engineering

scheduling,” International Journal of Production Research, 58(2),
pp. 487–508.

Pezzella, F., Morganti, G. and Ciaschetti, G. (2008) “A
genetic algorithm for the flexible job-shop scheduling
problem,” Computers & Operations Research, 35(10), pp.
3202–3212.

Pinedo, M. (2012) Scheduling. Second Edition. Springer.

Raaymakers, W. H. M. and Hoogeveen, J. A. (2000)
“Scheduling multipurpose batch process industries with
no-wait restrictions by simulated annealing,” European
Journal of Operational Research, 126(1), pp. 131–151.

Ragazzini, L. et al. (2020) “Tolerance Scheduling for CPS,”
in 2020 IEEE Conference on Industrial Cyberphysical Systems
(ICPS). IEEE, pp. 487–492.

Sundar, S., Suganthan, P. N. and Chua, T. J. (2013) “A
swarm intelligence approach to flexible job-shop
scheduling problem with no-wait constraint in
remanufacturing,” in International Conference on Artificial
Intelligence and Soft Computing. Springer, pp. 593–602.

Xie, J. et al. (2019) “Review on flexible job shop
scheduling,” IET Collaborative Intelligent Manufacturing, 1(3),
pp. 67–77.

Zhang, G., Gao, L. and Shi, Y. (2011) “An effective
genetic algorithm for the flexible job-shop scheduling
problem,” Expert Systems with Applications, 38(4), pp. 3563–
3573.

