
XXVII Summer School “Francesco Turco” – «Unconventional Plants»

 Evaluation of the impact of Long

Short-Term Memory parameters in

RUL prediction for aero engines

P. Manco*, L. Polverino*, R. Abbate*, M. Caterino*, M. Fera*,

M. Rinaldi*, M.A. Turino*, S. D’Ambra*, R. Macchiaroli*

* Dipartimento di Ingegneria Industriale, University of Campania “Luigi Vanvitelli”, Via Roma,

9 81031 – Aversa – Italy (pasquale.manco@unicampania.it)

Abstract: The paper deals with the application of a Long Short-Term Memory (LSTM) to estimate the Remaining Useful Life

(RUL) of NASA engines. The engine's data were retrieved from well-known, free available, datasets, in which 21 variables are

monitored during the entire engine life, until failure. Thus, the LSTM was identified as the best method to estimate the engine's

RUL because it is based on learning from the data series. The LSTM was developed in Python programming language, using

a training dataset for the learning phase and a test dataset to evaluate the performance of the algorithm, both provided by NASA.

Then, a sensitivity analysis was carried out to evaluate the impact of three parameters on the Mean Squared Error (MSE) of the

RUL and the training computational time, namely: i) the window size, i.e. the number of observations to consider to make

predictions; ii) the batch size, i.e the number of samples considered for updating the internal model parameters; iii) the Pearson

coefficient, used in the pre-processing phase to identify the most useful variables to give as input to the LSTM algorithm. The

results highlighted that the window dimension is the most influential parameter among those considered.

Keywords: RUL estimation, Long Short-Term Memory, machine learning, sensitivity analysis.

I. INTRODUCTION

Artificial Intelligence (AI) and in particular machine

learning (ML) techniques are considered the most

suitable for Predictive Maintenance (PdM) because they

can manage high-dimensional processes with a lot of

variables (Adhikari et al., 2018). Data from equipment

are processed by algorithms to identify some patterns

within the acquired signals and to derive the equipment’s

Remaining Useful Life (RUL), which is a metric for

estimating when the monitored equipment will lose its

normal operating conditions or will break down (Mathew

et al., 2018). RUL estimation focuses on prognostic and

health management and is useful to schedule

maintenance at the most suitable time (Kang et al., 2021).

The macro-steps to obtain an ML model for predictions

are data acquisition, dataset preparation, model training,

model validation and, at last, prediction (Dalzochio et al.,

2020). A large dataset is necessary to train an ML model.

Machine learning algorithms are distinguished into

supervised (Ren, 2021) and unsupervised (Khanum et al.,

2015) depending on whether the metric to be predicted,

just like the RUL, is labelled or not-labelled in the

training dataset. Labels are the final output in ML. In the

context of RUL prediction, labels are failure-related

information (Susto et al., 2015). Main learning problems

concern classification, regression and clustering

(Shreemali et al., 2021). The estimation equipment' RUL

is a typical regression problem because the output of the

prediction is a number, such as the time or the number of

operating cycles to the next fault, rather than categories

as in the case of classification problems. Artificial Neural

Network (ANN) is an ML technique that can be adopted

to estimate the RUL of equipment (Heimes, 2008). An

ANN is a data-driven automatic learning model inspired

by the biological nervous system (Okoh et al., 2014).

Training an ANN aims to find a general law that can

describe the link between inputs and outputs of a defined

phenomenon and make good predictions about its future

developments even with new input data, that are different

from those used to train the model (Mahamad et al.,

2010). This paper describes the development of a data-

driven model to predict the RUL of a turbofan jet engine.

The available data set is labelled, meaning the RUL

values (outputs) can be always associated with a set of

features (inputs). A feature is a property of the

phenomenon being observed which can be measured

(Jamwal et al., 2021). Moreover, the dataset is made up

of temporal series. A Long Short Term Memory (LSTM)

deep learning network (Bruneo & de Vita, 2019), which

belongs to the class of Recurrent Neural Network (RNN),

has been modelled to solve the supervised regression

problem.

A. Background and related works

The Feedforward Neural Network (FNN) with

backpropagation allowed to improve the accuracy of the

prognosis system to predict bearing failures (Mahamad,

Saon and Hiyama, 2010). Multi-Layer Perceptron (MLP)

Neural Network was used to predict the RUL of turbo

engines (Kang et al., 2021). Recurrent Neural Network

(RNN) showed to be one of the best approaches to

XXVII Summer School “Francesco Turco” – «Unconventional Plants»

improve the accuracy of RUL estimation for complex

dynamic systems (Heimes, 2008; Liu et al., 2010).

Especially the LSTM network provided additional

information on the prediction interval of RUL (Liao,

Zhang and Liu, 2018). The NASA Commercial Modular

Aero Propulsion System Simulation (C-MAPSS) has

been taken as an input dataset to estimate the RUL of

propulsion engines through LSTM network models (Hsu

& Jiang, 2018; Zhao et al., 2019). Models provided better

values of root mean squared error (MSE) compared to the

performance of MLP, support vector regression and

convolutional neural network models. A framework for

testing the robustness of LSTM architecture in predicting

the RUL has been provided and validated using the C-

MAPSS (Sayah et al., 2021). This research belongs to

these advances in the field of estimating and improving

the prediction accuracy of the RUL through RNN. All

modelling steps are shown and a multi-scenario analysis

is conducted to optimize the leading parameters of the

LSTM deep learning network.

B. Basics of ANNs

An ANN is made up of an input layer, that takes data

from the environment and whose nodes (neurons) are

representative of the number of features used as inputs,

one or more hidden layers and an output layer (Fig.1).

Fig. 1. Architecture of a FFNN (Mahamad et al., 2010)

Each neuron j of the layer l can be outlined through the

following equation (1):

𝑦𝑗 = 𝑓 (∑ 𝑤𝑗𝑖𝑥𝑖 + 𝑏𝑗

𝑛

𝑖=1

) 𝑖𝜖(𝑙 − 1), 𝑗𝜖𝑙 (1)

where 𝑤𝑗𝑖 is the weight of the link (synapsis) between the

neuron j and the neuron i belonging to the previous layer,

𝑥𝑖 is the signal that enters the neuron j from the neuron i,

𝑏𝑗 is the bias of the neuron j, f is the activation function

(Sharma et al., 2020) of the layer l that produces the

output 𝑦𝑗 according to the biased sum. In a supervised

ANN, signals propagate forward into the ANN until the

output layer. The output of the ANN is the prediction 𝑦̂

of the metric, e.g the RUL. It is compared to the actual

value of the metric 𝑦 (the label), that is known. The Mean

Squared Error (MSE) between the two values is usually

adopted as the cost function to be optimized during the

training of the ANN. At each iteration, named epoch, the

error backpropagates (Rumelhart et al., 1986). The

training aims to find the values of the weights and of the

bias that minimizes the cost function. Modelling an ANN

is articulated into two main stages: (i) creating the data

set and (ii) network implementation. The first stage

concerns data collection, the definition and the

organization of the features. Implementing the network

means choosing the training algorithm and setting

hyperparameters, which are the parameters that

characterize the network and control the learning process.

The main hyperparameters are the number of hidden

layers, the number of nodes in each layer, the activation

function of the hidden layers and the output layer, the

learning rate, the momentum, the training algorithm (Full

Batch Gradient Descent, Stochastic Gradient Descent,

Mini Batch Gradient descent), the number of epochs, the

dataset partition, meaning the percentage of the training

set, validation set and test set. When an ANN learns from

a dataset, two opposing errors may occur: underfitting

and overfitting (Mathworks, 2015). Overfitting is the

most frequent one and happens when the model

memorizes the dataset rather than learning from it. The

result is a model with a poor generalization: it provides

good predictions only for scenarios belonging to the

training set but it cannot apply the learnt information to

new, previously unseen, data. Methods to avoid

overfitting and underfitting are well outlined in the

literature (Jabbar & Khan, 2015).

C. Recurrent Neural Network

RNN can learn from the sequential dataset (Heimes,

2008). In a sequential dataset, it is not only the contents

of the dataset that matter, but also the way data are

ordered. This property is very useful for datasets where

the memory is crucial, such as temporal series. RNN can

replicate the concept of memory by introducing a loop

within the hidden layers that links the output of execution

to the hidden layer of the next execution; thus, besides

influencing the output layer, the output of a node can

influence itself in the further temporal step. RNN is

trained by using the Backpropagation Through Time

(BPTT) algorithm which is an algorithm adapted to RNN

from the traditional backpropagation algorithm (Werbos,

1990). The main difference concerns the weights

upgrading: the error is not only transmitted backward to

the network layers, but also through the temporal

executions. The number of multiplications over the

network grows significantly (the network has more

inputs), especially for very deep networks. For this

reason, traditional RNN suffers from the vanishing

gradient and exploding gradient problems (Van Houdt et

al., 2020), that affect the convergence of the algorithm.

The occurrence of these problems can be mitigated using

the variant LSTM, which adopts some gates to pass and

stored the most important information in a memory cell

(Sherstinsky, 2020). In an LSTM network, the training

set is not passed to the network all at once, but a window

swipes the training set till the end with a constant step of

one. The size of the window (WS) is a hyperparameter

that the designer must set a priori. This technique is

https://context.reverso.net/traduzione/inglese-italiano/it+is+not+only+the

XXVII Summer School “Francesco Turco” – «Unconventional Plants»

called sliding window (Yang et al., 2019). It allows to

memorize all the information more correctly. Since the

size of the windows influences the computational time

and the number of acquisitions needed to perform the

prediction, several proofs are required to optimize this

parameter.

II. MODELLING THE ANN

All phases that led to the creation of the ANN model will

be illustrated step by step. They have been outlined in a

flowchart (Fig. 2) (Nguyen & Medjaher, 2019).

Fig. 2. Flowchart of the ANN modelling process

The tool Microsoft Excel® has been adopted to process

and elaborate data and information during the pre-

processing and post-processing phases, while Pycharm®

and Google Colaboratory® have been used to model,

train and validate the ANN in Python coding language.

A. Introduction to the “NASA Turbofan Jet

Engine dataset

Before analysing pre-processing phase, some basic

information on the dataset is given. Benchmarking of

prognostic algorithms has been challenging due to the

limited availability of common datasets suitable for

prognostics. In 2010, in an attempt to alleviate this

problem, NASA (National Aeronautics and Space

Administration) made available the “Turbofan Jet Engine

dataset”. It is generated by the C-MAPSS (Commercial

Modular Aero-Propulsion System Simulation) tool that

simulates various degradation scenarios of the fleet of

100 engines of the same type (Ramasso & Saxena, 2014).

At the beginning of each scenario, the engine is normally

operating. It is degraded until a failure in the training set,

which is different for each of the 100 engines. In the test

dataset, the acquisitions about the degradation process

are stopped before the engine failure. Training and test

sets consist of 26 columns that describe the

characteristics (features) of the engine. The first and

second columns respectively represent the ID and the

degradation time steps for every engine. The next three

columns characterize the operation modes of the engines

(settings) while the final 21 columns correspond to the

outputs of 21 sensors, such as temperature and pressure

at the inlet of the fan, speed of the fan, fuel-air rate. The

C-MAPSS dataset includes 4 subsets: FD001, FD002,

FD003 and FD004, which correspond to 4 different cases

combining different operating conditions and fault

modes. This work focuses on the FD001. The size of the

training set dataset is 20631x26 (Fig.3), while the size of

the test set is 13096x26. In addition to the training and

test datasets, NASA made available the RUL values

(100x1) for the engine in the test set. These values

represent the number of cycles that pass from the moment

the acquisition was stopped to the moment the engine

failed.

B. Pre-processing

Pre-processing consists of dataset preparation before the

ANN starts learning by it. It is developed in three steps:

1. Creating RUL Output Feature.

2. Normalization and Correlation of Data.

3. Dividing Time Series in Time Windows.

Fig. 3. FD001 training dataset

In the training set, the engines reach the point of failure,

meaning that the exact cycle in which the engine fails is

known. Thus, it is possible to obtain the RUL for each of

the 100 engines and each of the cycle steps, through a

subtraction operation (2) :

 RULij = maxi – j (2)

where:

- RULij is the RUL relating to the jth cycle of the i-th

engine;

- maxi is the total number of cycles completed by the i-

th engine in its lifetime;

- j is just the corresponding cycle.

Knowing the RULji implies that the dataset is labelled.

The labelled training set is derived by sorting by column

the values of the RULij for each engine and each cycle

(Fig. 4). Labelling the test dataset requires one more step

to obtain the engine lifetime (maxi for test dataset) as the

degradation process ends some cycles before the system

fails. Therefore, the number of cycles at which

acquisitions are stopped must be added to each engine

XXVII Summer School “Francesco Turco” – «Unconventional Plants»

RUL provided by the “FD001 RUL dataset”. The input

data are obtained from multiple sensor sources with

different ranges of values. Thus, it is necessary to

normalize the features’ values by their mean and variance

to use these heterogeneous data for comparing features

and training the LSTM classifier. After data

normalization, all features have the same range from zero

to one, so it is possible to compare the features. They may

not necessarily contain information useful for learning.

For example, a feature that remains constant for all rows

Fig. 4. FD001 training dataset with RUL column

of the dataset cannot help the LMST in any way to

identify trends or patterns as well as correlated features

marginally improve prediction capabilities. Hence, it is

crucial, before moving on to creating and training the

ANN, to establish the degree of correlation between

features to decide whether or not it is right to eliminate

one of the two. There are different ways of conducting a

statistical correlation analysis between variables, in this

case, the one based on the Pearson correlation coefficient

(ρ) was chosen. Before deriving the correlations, constant

values ("setting3", "s1", "s5", "s10", "s16", "s18" and

"s19") have been eliminated because it is reasonable to

expect that they cannot contribute during the training.

Therefore, the total number of features has gone from 24

to 17. In this study, the Pearson coefficient (P) (Fu et al.,

2008) is one of the hyperparameters for the multi-

scenario experimental campaign in the post-process

phase. Specifically, three levels of correlation were

chosen as thresholds (0.7, 0.8 and 1) to establish which

features will be considered within the dataset: the case

P=1 means that all features are considered for the

training; then, variables that are correlated with P ≥ 0.8

in the first case, and P ≥ 0.7 in the second case, have been

eliminated from the dataset; it needs to be careful to

eliminate only one of the two correlated variables. In the

first case, when switchin from P=1 to P=0.8, the total

number of features is reduced from 17 to 13, while in the

second case, when switching from P=08 to P=0.7, the

total number of features is reduced from 13 to 10. Fig. 5

shows the heatmap for the level P ≥ 0.7. It is necessary to

divide each time series into many sub-sequences,

determined by a scrolling time window, to allow the

LSTM ANN to predict the outputs correctly. The window

size is the second parameter for the multi-scenario

campaign in the post-process phase; four different time

windows size has been defined: 10, 25, 50 and 100. To

avoid unwanted edge effects, the first two cycles of each

engine have been excluded from the subdivision, i.e the

first window for each of them will always start from the

third cycle. So, once the subdivision for engine #1 has

been completed, it passes directly to engine #2 avoiding

the common values between them. Therefore, the next

time window will start directly from cycle 3 of engine #2.

The process ends when the subdivision for all the 100

engines is completed, thus obtaining a certain number of

time windows that schematize the entire dataset. It should

be emphasized that if an engine is characterized by

several acquisitions lower than the window size, no time

window can be defined for it. Therefore, engines with

this feature will be excluded from the analysis and no

predictions can be made for them. The pre-processing

phase is finished. Now it is possible to move on to the

creation of the ANN.

Fig. 5. Heatmap: Pearson correlation P ≥ 0.7

C. ANN model building

The Keras library, which is part of the open-source and

wider Tensorflow library, has been used to create the

ANN. The network is composed of two types of layers:

dense and LSTM. The dense layer is the simplest type of

layer in an ANN, it is typical for the MLP network, while

LSTM is needed to avoid the problems of vanishing

gradient and exploding gradient. Since the dataset is

made up of very long ordered sequences of data with

many features, the network has been modelled with three

hidden layers. Thus, summing the input and output

layers, the total number of layers is five. The summary of

the ANN structure for one experiment is shown in Fig. 6.

The number of nodes is a trade-off value to keep away

the underfitting and overfitting scenarios. It is worth

noting that in layer 2 (lstm_1 in Fig. 6) the dropout

XXVII Summer School “Francesco Turco” – «Unconventional Plants»

technique has been used to avoid overfitting. It consists

in switching off a percentage of nodes at each epoch of

the training. This percentage, which is called the dropout

rate, is itself a hyperparameter that the modeller must set.

In this case, it has been set to 0.5, meaning that 50% of

the nodes belonging to this layer will be randomly

dropped at each epoch.

Fig. 6. ANN model for one experiment

The activation functions of the fourth and the output

layers, which are both dense layers, are respectively the

reLU function and the linear function.

D. Training and validation

The training must be configurated, meaning the modeller

have to choose the optimization algorithm and the cost

function to be minimized. This operation has been

executed with the command model compile in Keras. The

chosen algorithm is Adam (Jais et al., 2019). It is a

variant of the gradient descent for the deep ANN. It

adopts a dynamic learning rate for every feature and the

momentum. The learning rate has been set to the default

value of 0.001. The Mean Square Error (MSE) has been

chosen as the cost function. The training is called by the

command model fit. In this phase, the modeller enters the

input (X-train) and output (Y-train) matrices from which

the network will learn. The Mini Batch Gradient

Descendent algorithm has been selected as a training

method. This method executes a descent step for a limited

number (a batch) of dataset observations at a time. Thus,

it requires setting the batch size (BS), which is usually

between 32 and 512. The batch size is another

hyperparameter, and it represents also one of the three

parameters that will vary in the multi-scenario analysis.

Three batch sizes are considered: 128, 256 and 512.; 20%

of the training set has been allocated to the validation set,

and the number of epochs for the training has been set to

100. The trends of the MSE curves for the training set

and the validation set over the training are shown in Fig.

7. As can be seen, the two curves tend to overlap from

epoch 80 around a minimum value of the MSE. This

outcome means that the training was successful and there

will not be any overfitting during the test.

E. Post-processing

Some metrics have to be defined in order to asses

quantitatively the performance of the predictive model.

An experimental campaign is useful to understand how

much parameters influence the selected metrics. Two

metrics have been chosen: the MSE and computation

time (CT). The formula (3) for the MSE is:

Fig. 7. MSE during the learning process

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 (3)

where 𝑦𝑖 is the actual value of RUL for the window j, 𝑦̂𝑖

is the predicted value of RUL for the window j and n is

the total number of windows in the dataset. Moreover, it

is crucial to consider the computation time since the time

has a cost value in the engineering field; if the

computation time is too long for the dynamic of the

monitored equipment, decision-makers cannot use the

prediction to schedule proper maintenance activities.

Results are saved in a text file by using the library numpy.

For each experiment, the command saves a matrix that

indicates the window number, the engine number, the

actual RUL and the predicted RUL. Training time is

clocked and saved. The multi-scenario analysis consists

in executing a series of simulations by varying some

parameters in turn (TABLE I). The parameters are: the

batch size (BS), the Pearson index (P) and the window

size (WS). The scenarios are indicated with the triplet

(BS,P,WS). Experiments are carried out keeping fix two

parameters and by varying the third.

TABLE I

VALUES OF PARAMETERS IN THE MULTI-SCENARIO ANALYSIS

Parameter Level 1 Level 2 Level 3 Level 4

Batch size 128 256 512

Pearson 0,7 0,8 1

Window size 10 25 50 100

The multi-scenario analysis consists in executing a series

of simulations by varying some parameters in turn

(TABLE I). The parameters are: the batch size (BS), the

Pearson index (P) and the window size (WS). The

scenarios are indicated with the triplet (BS,P,WS).

XXVII Summer School “Francesco Turco” – «Unconventional Plants»

Experiments are carried out keeping fix two parameters

and by varying the third. Since the starting weights of the

network are initialized randomly, they have been blocked

to the same values for each simulation to obtain results

best possible comparable.

III. RESULTS ANALYSIS AND DISCUSSION

A correlation analysis showed a strong linear correlation

between the WS and the two metrics. More precisely, the

WS increases as CT linearly increases and MSE linearly

decrease. A larger window involves the network makes a

more precise prediction because it is based on more

acquisitions. Indeed, the time needed to process larger

windows is longer. The others parameters do not have a

linear correlation with the metrics (Fig.8). This finding

underlines that the WS is a very influential parameter, but

it does not exclude that the two others are not, because

they could have a not-linear correlation with the metrics.

Consequently, MSE and CT have been plotted in three

scenarios, one for every BS, by using the WS as an

independent variable and P as a parameter (Fig. 9).

Fig. 8. Correlation between parameters and MSE

Increasing the P implies a reduction of the MSE for the

same WS. A higher P means the network is trained with

a greater number of features, meaning more information.

The only exceptions to this trend are the scenarios

(128,0.8,50) and (128,1,100). TC is not affected by

Pearson change. The only exception occurs in the

scenario (512,1,100). Curves do not show a noticeable

change when the BS increases, especially for high values

of the BS. This aspect confirms that it impacts little on

the accuracy of the prediction. Hence, choosing a higher

P results in the lowest MSE without impacting on the TC.

Since the WS is the pivoting parameter to design the

ANN, it is interesting to derive the percentage variation

of MSE and TC between the levels of the WS to

understand when it is convenient to expand the WS. The

goal is to reduce the MSE as much as possible while

keeping TC low. Looking at TABLE II, the most

convenient transitions are 25-50 and 50-100, for which a

good improvement in accuracy does not correspond to an

excessive increase of the TC. Considerations about the

optimal values of the design parameters, just like the WS,

are crucial, but also other factors must be considered in

an industrial environment. The TC varies from 5 min to

35 min. This temporal gap could have more or less large

economic implications depending on the company.

Fig. 9. MSE varying BS, P and WS

TABLE II

 PERCENTAGE VARIATION OF MSE AND TC

BS P Transition MSE

[%]

TC

[%]
128 1 10-25 -22 +143

128 1 25-50 -35 +62

128 1 50-100 -30 +49

256 1 10-25 -25 +129

256 1 25-50 -31 +48

256 1 50-100 -40 +58

512 1 10-25 -25 +97

512 1 25-50 -30 +78

512 1 50-100 -40 +96

XXVII Summer School “Francesco Turco” – «Unconventional Plants»

IV. CONCLUSION

This work describes systematically how to model and

train an LSTM neural network to predict the RUL of a

system subjected to continuous degradation for

performing PdM. The NASA dataset for the turbofan

engine was used to train and test the model. Before the

training, the dataset had to be prepared. Specifically,

output features (labels) for the training set and the test set

have been derived at first. Then, linear correlation

analysis was necessary to find correlated features. Since

data are sequential, the sliding window algorithm was

used to split the dataset into sub-sequences. An LSTM

neural network has been trained through a variant of the

backpropagation algorithm and validated by using the

early stopping criterion. The script has been written in

Python and executed in Google Colab and Pycharm. A

sensitivity analysis with 36 experiments was carried out

to assess the impact of the parameters BS, P and WS on

the accuracy and performance of the ANN. The MSE and

the computation time have been chosen as evaluation

metrics. Experiments showed that:

• The WS is the most influential parameter. Increasing

the window size from the minimum to the maximum

value allows to increase the MSE to 71%. However,

the computational time also increases by about 80%.

• Increasing Pearson the MSE decreases without a

corresponding increment in TC. Thus, this evidence

suggests not to exclude any features from the dataset.

• The BS is the least significant parameter.

This study proved that experiments are the better way to

improve the performance of an ANN for the prediction

of the RUL of equipment. Further studies will be

conducted by implementing a more sophisticated ANN

architecture, where “convolutional” layers are added to

LSTM and dense layers in a deep neural network.

REFERENCES

[1] Adhikari, P., Rao, H. G., & Buderath, Dipl.-I. M. (2018).
Machine Learning based Data Driven Diagnostics &

Prognostics Framework for Aircraft Predictive Maintenance.

10th International Symposium on NDT in Aerospace, October
24-26, 2018, Dresden, Germany, Ml.

[2] Bruneo, D., & de Vita, F. (2019). On the use of LSTM networks

for predictive maintenance in smart industries. Proceedings -
IEEE SMARTCOMP 2019.

[3] Dalzochio, J., Kunst, R., Pignaton, E., Binotto, A., Sanyal, S.,

Favilla, J., & Barbosa, J. (2020). Machine learning and
reasoning for predictive maintenance in Industry 4.0: Current

status and challenges. In Computers in Industry (Vol. 123).

[4] Fu, Y., Yan, S., & Huang, T. S. (2008). Correlation metric for

generalized feature extraction. IEEE T Pattern Anal, 30(12).

[5] Heimes, F. O. (2008). Recurrent neural networks for remaining

useful life estimation. 2008 International Conference on
Prognostics and Health Management, PHM.

[6] Hsu, C. S., & Jiang, J. R. (2018). Remaining useful life

estimation using long short-term memory deep learning.
Proceedings of 4th IEEE ICASI 2018.

[7] Jabbar, H. K., & Khan, R. Z. (2015). Methods to Avoid Over-

Fitting and Under-Fitting in Supervised Machine Learning
[8] Jais, I. K. M., Ismail, A. R., & Nisa, S. Q. (2019). Adam

Optimization Algorithm for Wide and Deep Neural Network.

Knowledge Engineering and Data Science, 2(1).

[9] Jamwal, A., Agrawal, R., Sharma, M., Kumar, A., Kumar, V.,

& Garza-Reyes, J. A. A. (2021). Machine learning

applications for sustainable manufacturing: a bibliometric-
based review for future research. Journal of Enterprise

Information Management.

[10] Kang, Z., Catal, C., & Tekinerdogan, B. (2021). Remaining
useful life (Rul) prediction of equipment in production lines

using artificial neural networks. Sensors (Switzerland), 21(3).

[11] Khanum, M., Mahboob, T., Imtiaz, W., Abdul Ghafoor, H.,
& Sehar, R. (2015). A Survey on Unsupervised Machine

Learning Algorithms for Automation, Classification and

Maintenance. International Journal of Computer
Applications, 119(13).

[12] Liao, Y., Zhang, L., & Liu, C. (2018). Uncertainty Prediction

of Remaining Useful Life Using Long Short-Term Memory
Network Based on Bootstrap Method. IEEE, ICPHM.

[13] Liu, J., Saxena, A., Goebel, K., Saha, B., & Wang, W. (2010).

An adaptive recurrent neural network for remaining useful
life prediction of lithium-ion batteries, PHM 2010.

[14] Mahamad, A. K., Saon, S., & Hiyama, T. (2010). Predicting

remaining useful life of rotating machinery based artificial
neural network. Comput Math Appl, 60(4).

[15] Mathew, V., Toby, T., Singh, V., Rao, B. M., & Kumar, M.

G. (2018). Prediction of Remaining Useful Lifetime (RUL) of
turbofan engine using machine learning. IEEE ICCS 2017,

[16] Mathworks. (2015). Improve Neural Network Generalization

and Avoid Overfitting. Matlab R2015.
[17] Nguyen, K. T. P., & Medjaher, K. (2019). A new dynamic

predictive maintenance framework using deep learning for

failure prognostics. Reliab Eng Syst Safe, 188.
[18] Okoh, C., Roy, R., Mehnen, J., & Redding, L. (2014).

Overview of Remaining Useful Life prediction techniques in

Through-life Engineering Services. Procedia CIRP, 16.
[19] Ramasso, E., & Saxena, A. (2014). Review and analysis of

algorithmic approaches developed for prognostics on

CMAPSS dataset. PHM 2014.
[20] Ren, Y. (2021). Optimizing Predictive Maintenance with

Machine Learning for Reliability Improvement. ASCE-

ASME Journal of Risk and Uncertainty in Engineering
Systems, Part B: Mechanical Engineering, 7(3).

[21] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986).

Learning representations by back-propagating errors. Nature,
323(6088).

[22] Sayah, M., Guebli, D., al Masry, Z., & Zerhouni, N. (2021).

Robustness testing framework for RUL prediction Deep
LSTM networks. ISA Transactions, 113.

[23] Sharma, S., Sharma, S., & Athaiya, A. (2020). Activation

functions in neural networks. International Journal of
Engineering Applied Sciences and Technology, 04(12).

[24] Sherstinsky, A. (2020). Fundamentals of Recurrent Neural

Network (RNN) and Long Short-Term Memory (LSTM)
network. Physica D: Nonlinear Phenomena, 404.

[25] Shreemali, J., Malviya, L., Paliwal, P., Chakrabarti, P.,
Poddar, S., Jindal, B., & Chaubisa, H. (2021). Comparing

performance of multiple classifiers for regression and

classification machine learning problems using structured
datasets. Materials Today.

[26] Susto, G. A., Schirru, A., Pampuri, S., McLoone, S., & Beghi,

A. (2015). Machine learning for predictive maintenance: A
multiple classifier approach. IEEE T Ind Inform, 11(3).

[27] van Houdt, G., Mosquera, C., & Nápoles, G. (2020). A review

on the long short-term memory model. Artif Intel Rev, 53(8).
[28] Werbos, P. J. (1990). Backpropagation Through Time: What

It Does and How to Do It. Proceedings of the IEEE, 78(10).

[29] Yang, J., Guo, Y., & Zhao, W. (2019). Long short-term
memory neural network based fault detection and isolation for

electro-mechanical actuators. Neurocomputing, 360.

[30] Zhang, A., Wang, H., Li, S., Cui, Y., Liu, Z., Yang, G., & Hu,
J. (2018). Transfer learning with deep recurrent neural

networks for remaining useful life estimation. Applied

Sciences (Switzerland), 8(12).
[31] Zhao, S., Zhang, Y., Wang, S., Zhou, B., & Cheng, C. (2019).

A recurrent neural network approach for remaining useful life

prediction utilizing a novel trend features construction
method. Measurement: Journal Int Measu Confe, 146.

