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Abstract: The paper deals with the application of a Long Short-Term Memory (LSTM) to estimate the Remaining Useful Life 

(RUL) of NASA engines. The engine's data were retrieved from well-known, free available, datasets, in which 21 variables are 

monitored during the entire engine life, until failure. Thus, the LSTM was identified as the best method to estimate the engine's 

RUL because it is based on learning from the data series. The LSTM was developed in Python programming language, using 

a training dataset for the learning phase and a test dataset to evaluate the performance of the algorithm, both provided by NASA. 

Then, a sensitivity analysis was carried out to evaluate the impact of three parameters on the Mean Squared Error (MSE) of the 

RUL and the training computational time, namely: i) the window size, i.e. the number of observations to consider to make 

predictions; ii) the batch size, i.e the number of samples considered for updating the internal model parameters; iii) the Pearson 

coefficient, used in the pre-processing phase to identify the most useful variables to give as input to the LSTM algorithm. The 

results highlighted that the window dimension is the most influential parameter among those considered.  

Keywords: RUL estimation, Long Short-Term Memory, machine learning, sensitivity analysis. 

I. INTRODUCTION 

Artificial Intelligence (AI) and in particular machine 

learning (ML) techniques are considered the most 

suitable for Predictive Maintenance (PdM) because they 

can manage high-dimensional processes with a lot of 

variables (Adhikari et al., 2018). Data from equipment 

are processed by algorithms to identify some patterns 

within the acquired signals and to derive the equipment’s 

Remaining Useful Life (RUL), which is a metric for 

estimating when the monitored equipment will lose its 

normal operating conditions or will break down (Mathew 

et al., 2018). RUL estimation focuses on prognostic and 

health management and is useful to schedule 

maintenance at the most suitable time (Kang et al., 2021). 

The macro-steps to obtain an ML model for predictions 

are data acquisition, dataset preparation, model training, 

model validation and, at last, prediction (Dalzochio et al., 

2020). A large dataset is necessary to train an ML model. 

Machine learning algorithms are distinguished into 

supervised (Ren, 2021) and unsupervised (Khanum et al., 

2015) depending on whether the metric to be predicted, 

just like the RUL, is labelled or not-labelled in the 

training dataset. Labels are the final output in ML. In the 

context of RUL prediction, labels are failure-related 

information (Susto et al., 2015). Main learning problems 

concern classification, regression and clustering 

(Shreemali et al., 2021). The estimation equipment' RUL 

is a typical regression problem because the output of the 

prediction is a number, such as the time or the number of 

operating cycles to the next fault, rather than categories 

as in the case of classification problems. Artificial Neural 

Network (ANN) is an ML technique that can be adopted 

to estimate the RUL of equipment (Heimes, 2008). An 

ANN is a data-driven automatic learning model inspired 

by the biological nervous system (Okoh et al., 2014). 

Training an ANN aims to find a general law that can 

describe the link between inputs and outputs of a defined 

phenomenon and make good predictions about its future 

developments even with new input data, that are different 

from those used to train the model (Mahamad et al., 

2010). This paper describes the development of a data-

driven model to predict the RUL of a turbofan jet engine. 

The available data set is labelled, meaning the RUL 

values (outputs) can be always associated with a set of 

features (inputs). A feature is a property of the 

phenomenon being observed which can be measured 

(Jamwal et al., 2021). Moreover, the dataset is made up 

of temporal series. A Long Short Term Memory (LSTM) 

deep learning network (Bruneo & de Vita, 2019), which 

belongs to the class of Recurrent Neural Network (RNN), 

has been modelled to solve the supervised regression 

problem.  

A. Background and related works 

The Feedforward Neural Network (FNN) with 

backpropagation allowed to improve the accuracy of the 

prognosis system to predict bearing failures (Mahamad, 

Saon and Hiyama, 2010). Multi-Layer Perceptron (MLP) 

Neural Network was used to predict the RUL of turbo 

engines (Kang et al., 2021). Recurrent Neural Network 

(RNN) showed to be one of the best approaches to 
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improve the accuracy of RUL estimation for complex 

dynamic systems (Heimes, 2008; Liu et al., 2010). 

Especially the LSTM network provided additional 

information on the prediction interval of RUL ( Liao, 

Zhang and Liu, 2018). The NASA Commercial Modular 

Aero Propulsion System Simulation (C-MAPSS) has 

been taken as an input dataset to estimate the RUL of 

propulsion engines through  LSTM network models (Hsu 

& Jiang, 2018; Zhao et al., 2019). Models provided better 

values of root mean squared error (MSE) compared to the 

performance of  MLP, support vector regression and 

convolutional neural network models. A framework for 

testing the robustness of LSTM architecture in predicting 

the RUL has been provided and validated using the C-

MAPSS (Sayah et al., 2021). This research belongs to 

these advances in the field of estimating and improving 

the prediction accuracy of the RUL through  RNN. All 

modelling steps are shown and a multi-scenario analysis 

is conducted to optimize the leading parameters of the 

LSTM  deep learning network. 

B. Basics of ANNs  

An ANN is made up of  an input layer, that takes data 

from the environment and  whose nodes (neurons) are 

representative of the number of features used as inputs, 

one or more hidden layers and an output layer (Fig.1).  

 

 

Fig. 1. Architecture of a FFNN (Mahamad et al., 2010) 

 

Each neuron j of the layer l can be outlined through the 

following equation (1): 

𝑦𝑗 = 𝑓 (∑ 𝑤𝑗𝑖𝑥𝑖 + 𝑏𝑗

𝑛

𝑖=1

)   𝑖𝜖(𝑙 − 1), 𝑗𝜖𝑙 (1) 

where 𝑤𝑗𝑖  is the weight of the link (synapsis) between the 

neuron j and the neuron i belonging to the previous layer, 

𝑥𝑖 is the signal that enters the neuron j from the neuron i, 

𝑏𝑗 is the bias of the neuron j, f is the activation function 

(Sharma et al., 2020) of the layer l  that produces the 

output 𝑦𝑗 according to the biased sum. In a supervised 

ANN, signals propagate forward into the ANN until the 

output layer. The output of the ANN is the prediction �̂� 

of the metric, e.g the RUL. It is compared to the actual 

value of the metric 𝑦 (the label), that is  known. The Mean 

Squared Error (MSE) between the two values  is usually 

adopted as the cost function to be optimized during the 

training of the ANN. At each iteration, named epoch, the 

error backpropagates (Rumelhart et al., 1986). The 

training aims to find the values of the weights and of the 

bias that minimizes the cost function. Modelling an ANN 

is articulated into two main stages: (i) creating the data 

set and (ii) network implementation. The first stage 

concerns data collection, the definition and the 

organization of the features. Implementing the network 

means choosing the training algorithm and setting 

hyperparameters, which are the parameters that 

characterize the network and control the learning process. 

The main hyperparameters are the number of hidden 

layers, the number of nodes in each layer, the activation 

function of the hidden layers and the output layer, the 

learning rate, the momentum, the training algorithm (Full 

Batch Gradient Descent, Stochastic Gradient Descent, 

Mini Batch Gradient descent), the number of epochs, the 

dataset partition, meaning the percentage of the training 

set, validation set and test set. When an ANN learns from 

a dataset, two opposing errors may occur: underfitting 

and overfitting (Mathworks, 2015). Overfitting is the 

most frequent one and happens when the model 

memorizes the dataset rather than learning from it. The 

result is a model with a poor generalization: it provides 

good predictions only for scenarios belonging to the 

training set but it cannot apply the learnt information to 

new, previously unseen, data.  Methods to avoid 

overfitting and underfitting are well outlined in the 

literature (Jabbar & Khan, 2015). 

C. Recurrent Neural Network  

RNN can learn from the sequential dataset (Heimes, 

2008). In a sequential dataset,  it is not only the contents 

of the dataset that matter, but also the way data are 

ordered. This property is very useful for datasets where 

the memory is crucial, such as temporal series.  RNN can 

replicate the concept of memory by introducing a loop 

within the hidden layers that links the output of execution 

to the hidden layer of the next execution; thus, besides 

influencing the output layer, the output of a node can 

influence itself in the further temporal step. RNN is 

trained by using the Backpropagation Through Time 

(BPTT) algorithm which is an algorithm adapted to RNN 

from the traditional backpropagation algorithm (Werbos, 

1990). The main difference concerns the weights 

upgrading: the error is not only transmitted backward to 

the network layers, but also through the temporal 

executions. The number of multiplications over the 

network grows significantly (the network has more 

inputs), especially for very deep networks. For this 

reason, traditional RNN suffers from the vanishing 

gradient and exploding gradient problems (Van Houdt et 

al., 2020), that affect the convergence of the algorithm. 

The occurrence of these problems can be mitigated using 

the variant LSTM, which adopts some gates to pass and 

stored the most important information in a memory cell 

(Sherstinsky, 2020). In an LSTM network, the training 

set is not passed to the network all at once, but a window 

swipes the training set till the end with a constant step of 

one. The size of the window (WS) is a hyperparameter 

that the designer must set a priori. This technique is 

https://context.reverso.net/traduzione/inglese-italiano/it+is+not+only+the
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called sliding window (Yang et al., 2019). It allows to 

memorize all the information more correctly. Since the 

size of the windows influences the computational time 

and the number of acquisitions needed to perform the 

prediction, several proofs are required to optimize this 

parameter.  

II. MODELLING THE ANN 

All phases that led to the creation of the ANN model will 

be illustrated step by step. They have been outlined in a  

flowchart (Fig. 2) (Nguyen & Medjaher, 2019).  

 

 

Fig. 2. Flowchart of the ANN modelling process   

 

The tool Microsoft Excel®  has been adopted to process 

and elaborate data and information during the pre-

processing and post-processing phases, while Pycharm®  

and Google Colaboratory®  have been used to model, 

train and validate the ANN in Python coding language.  

A. Introduction to the “NASA Turbofan Jet 

Engine dataset 

Before analysing pre-processing phase, some basic 

information on the dataset is given. Benchmarking of 

prognostic algorithms has been challenging due to the 

limited availability of common datasets suitable for 

prognostics. In 2010, in an attempt to alleviate this 

problem, NASA (National Aeronautics and Space 

Administration) made available the “Turbofan Jet Engine 

dataset”. It is generated by the C-MAPSS (Commercial 

Modular Aero-Propulsion System Simulation) tool that 

simulates various degradation scenarios of the fleet of 

100 engines of the same type (Ramasso & Saxena, 2014). 

At the beginning of each scenario, the engine is normally 

operating. It is degraded until a failure in the training set, 

which is different for each of the 100 engines. In the test 

dataset, the acquisitions about the degradation process 

are stopped before the engine failure. Training and test 

sets consist of 26 columns that describe the 

characteristics (features) of the engine. The first and 

second columns respectively represent the ID and the 

degradation time steps for every engine. The next three 

columns characterize the operation modes of the engines 

(settings) while the final 21 columns correspond to the 

outputs of 21 sensors, such as temperature and pressure 

at the inlet of the fan, speed of the fan, fuel-air rate. The 

C-MAPSS dataset includes 4 subsets: FD001, FD002, 

FD003 and FD004, which correspond to 4 different cases 

combining different operating conditions and fault 

modes. This work focuses on the FD001. The size of the 

training set dataset is 20631x26 (Fig.3), while the size of 

the test set is 13096x26. In addition to the training and 

test datasets, NASA made available the RUL values 

(100x1) for the engine in the test set. These values 

represent the number of cycles that pass from the moment 

the acquisition was stopped to the moment the engine 

failed.  

B. Pre-processing 

Pre-processing consists of dataset preparation before the 

ANN starts learning by it. It is developed in three steps: 

1. Creating RUL Output Feature. 

2. Normalization and Correlation of Data. 

3. Dividing Time Series in Time Windows. 

 

 

Fig. 3. FD001 training dataset 

 

In the training set, the engines reach the point of failure, 

meaning that the exact cycle in which the engine fails is 

known. Thus, it is possible to obtain the RUL for each of 

the 100 engines and each of the cycle steps, through a 

subtraction operation (2) : 

 RULij = maxi – j (2) 

where: 

- RULij is the RUL relating to the jth cycle of the i-th 

engine; 

- maxi is the total number of cycles completed by the i-

th engine in its lifetime; 

- j is just the corresponding cycle. 

Knowing the RULji implies that the dataset is labelled. 

The labelled training set is derived by sorting by column 

the values of the RULij for each engine and each cycle 

(Fig. 4). Labelling the test dataset requires one more step 

to obtain the engine lifetime (maxi for test dataset) as the 

degradation process ends some cycles before the system 

fails.  Therefore, the number of cycles at which 

acquisitions are stopped must be added to each engine 
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RUL provided by the “FD001 RUL dataset”. The input 

data are obtained from multiple sensor sources with 

different ranges of values. Thus, it is necessary to 

normalize the features’ values by their mean and variance 

to use these heterogeneous data for comparing features 

and training the LSTM classifier. After data 

normalization, all features have the same range from zero 

to one, so it is possible to compare the features. They may 

not necessarily contain information useful for learning. 

For example, a feature that remains constant for all rows  

 

 

Fig. 4. FD001 training dataset with RUL column 

 

of the dataset cannot help the LMST in any way to 

identify trends or patterns as well as correlated features 

marginally improve prediction capabilities. Hence, it is 

crucial, before moving on to creating and training the 

ANN, to establish the degree of correlation between 

features to decide whether or not it is right to eliminate 

one of the two. There are different ways of conducting a 

statistical correlation analysis between variables, in this 

case, the one based on the Pearson correlation coefficient 

(ρ) was chosen. Before deriving the correlations, constant 

values ("setting3", "s1", "s5", "s10", "s16", "s18" and 

"s19") have been eliminated because it is reasonable to 

expect that they cannot contribute during the training. 

Therefore, the total number of features has gone from 24 

to 17. In this study, the Pearson coefficient (P) (Fu et al., 

2008) is one of the hyperparameters for the multi-

scenario experimental campaign in the post-process 

phase. Specifically, three levels of correlation were 

chosen as thresholds (0.7, 0.8 and 1) to establish which 

features will be considered within the dataset: the case 

P=1 means that all features are considered for the 

training; then, variables that are correlated with P ≥ 0.8 

in the first case, and P ≥ 0.7 in the second case, have been 

eliminated from the dataset; it needs to be careful to 

eliminate only one of the two correlated variables. In the 

first case, when switchin from P=1 to P=0.8, the total 

number of features is reduced from 17 to 13, while in the 

second case, when switching from P=08 to P=0.7, the 

total number of features is reduced  from 13 to 10. Fig. 5 

shows the heatmap for the level P ≥ 0.7. It is necessary to 

divide each time series into many sub-sequences, 

determined by a scrolling time window, to allow the 

LSTM ANN to predict the outputs correctly. The window 

size is the second parameter for the multi-scenario 

campaign in the post-process phase; four different time 

windows size has been defined: 10, 25, 50 and 100. To 

avoid unwanted edge effects, the first two cycles of each 

engine have been excluded from the subdivision, i.e the 

first window for each of them will always start from the 

third cycle. So, once the subdivision for engine #1 has 

been completed, it passes directly to engine #2 avoiding 

the common values between them. Therefore, the next 

time window will start directly from cycle 3 of engine #2. 

The process ends when the subdivision for all the 100 

engines is completed, thus obtaining a certain number of 

time windows that schematize the entire dataset. It should 

be emphasized that if an engine is characterized by 

several acquisitions lower than the window size, no time 

window can be defined for it. Therefore, engines with 

this feature will be excluded from the analysis and no 

predictions can be made for them. The pre-processing 

phase is finished. Now it is possible to move on to the 

creation of the ANN. 

 

 

Fig. 5. Heatmap: Pearson correlation  P ≥ 0.7 

 

C. ANN model building 

The Keras library, which is part of the open-source and 

wider Tensorflow library, has been used to create the 

ANN. The network is composed of two types of layers: 

dense and LSTM. The dense layer is the simplest type of 

layer in an ANN, it is typical for the MLP network, while 

LSTM is needed to avoid the problems of vanishing 

gradient and exploding gradient. Since the dataset is 

made up of very long ordered sequences of data with 

many features, the network has been modelled with three 

hidden layers. Thus, summing the input and output 

layers, the total number of layers is five. The summary of 

the ANN structure for one experiment is shown in Fig. 6. 

The number of nodes is a trade-off value to keep away 

the underfitting and overfitting scenarios. It is worth 

noting that in layer 2 (lstm_1 in Fig. 6) the dropout 
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technique has been used to avoid overfitting. It consists 

in switching off a percentage of nodes at each epoch of 

the training. This percentage, which is called the dropout 

rate,  is itself a hyperparameter that the modeller must set. 

In this case, it has been set to 0.5, meaning that 50% of 

the nodes belonging to this layer will be randomly 

dropped at each epoch. 

 

Fig. 6. ANN model for one experiment 

 

The activation functions of the fourth and the output 

layers, which are both dense layers, are respectively the 

reLU function and the linear function. 

D. Training and validation 

The training must be configurated, meaning the modeller 

have to choose the optimization algorithm and the cost 

function to be minimized. This operation has been 

executed with the command model compile in Keras. The 

chosen algorithm is Adam (Jais et al., 2019). It is a 

variant of the gradient descent for the deep ANN. It 

adopts a dynamic learning rate for every feature and the 

momentum. The learning rate has been set to the default 

value of 0.001. The Mean Square Error (MSE) has been 

chosen as the cost function. The training is called by the 

command model fit. In this phase, the modeller enters the 

input (X-train) and output (Y-train) matrices from which 

the network will learn. The Mini Batch Gradient 

Descendent algorithm has been selected as a training 

method. This method executes a descent step for a limited 

number (a batch) of dataset observations at a time. Thus, 

it requires setting the batch size (BS), which is usually 

between 32 and 512. The batch size is another 

hyperparameter, and it represents also one of the three 

parameters that will vary in the multi-scenario analysis. 

Three batch sizes are considered: 128, 256 and 512.; 20% 

of the training set has been allocated to the validation set, 

and the number of epochs for the training has been set to 

100. The trends of the MSE curves for the training set 

and the validation set over the training are shown in Fig. 

7. As can be seen, the two curves tend to overlap from 

epoch 80 around a minimum value of the MSE. This 

outcome means that the training was successful and there 

will not be any overfitting during the test.  

E. Post-processing  

Some metrics have to be defined in order to asses 

quantitatively the performance of the predictive model. 

An experimental campaign is useful to understand how 

much parameters influence the selected metrics. Two 

metrics have been chosen: the MSE and computation 

time (CT). The formula (3) for the MSE is: 

 

Fig. 7. MSE during the learning process 

 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

 (3) 

where 𝑦𝑖 is the actual value of RUL  for the window j, �̂�𝑖 

is the predicted value of RUL for the window j and n is 

the total number of windows in the dataset. Moreover, it 

is crucial to consider the computation time since the time 

has a cost value in the engineering field; if the 

computation time is too long for the dynamic of the 

monitored equipment, decision-makers cannot use the 

prediction to schedule proper maintenance activities.  

Results are saved in a text file by using the library numpy. 

For each experiment, the command saves a matrix that 

indicates the window number, the engine number, the 

actual RUL and the predicted RUL. Training time is 

clocked and saved. The multi-scenario analysis consists 

in executing a series of simulations by varying some 

parameters in turn (TABLE I). The parameters are: the 

batch size (BS), the Pearson index (P)  and the window 

size (WS). The scenarios are indicated with the triplet 

(BS,P,WS).  Experiments are carried out keeping fix two 

parameters and by varying the third.  

TABLE I  

VALUES OF PARAMETERS IN THE MULTI-SCENARIO ANALYSIS 

 

Parameter Level 1 Level 2 Level 3 Level 4 

Batch size 128 256 512 
 

Pearson 0,7 0,8 1 
 

Window size 10 25 50 100 

 

The multi-scenario analysis consists in executing a series 

of simulations by varying some parameters in turn 

(TABLE I). The parameters are: the batch size (BS), the 

Pearson index (P)  and the window size (WS). The 

scenarios are indicated with the triplet (BS,P,WS).  
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Experiments are carried out keeping fix two parameters 

and by varying the third. Since the starting weights of the 

network are initialized randomly, they have been blocked 

to the same values for each simulation to obtain results 

best possible comparable.  

III. RESULTS ANALYSIS AND DISCUSSION 

A correlation analysis showed a strong linear correlation 

between the WS and the two metrics. More precisely, the 

WS increases as CT linearly increases and MSE linearly 

decrease. A larger window involves the network makes a 

more precise prediction because it is based on more 

acquisitions. Indeed, the time needed to process larger 

windows is longer. The others  parameters do not have a 

linear correlation with the metrics (Fig.8). This finding 

underlines that the WS is a very influential parameter, but 

it does not exclude that the two others are not, because 

they could have a not-linear correlation with the metrics. 

Consequently, MSE and CT have been plotted in three 

scenarios, one for every BS, by using the WS as an 

independent variable and P as a parameter (Fig. 9). 

 

 

Fig. 8. Correlation between parameters and MSE 

 

Increasing the P implies a reduction of the MSE for the 

same WS. A higher P means the network is trained with 

a greater number of features, meaning more information. 

The only exceptions to this trend are the scenarios 

(128,0.8,50) and (128,1,100).  TC is not affected by 

Pearson change. The only exception occurs in the 

scenario (512,1,100). Curves do not show a noticeable 

change when the BS increases, especially for high values 

of the BS. This aspect confirms that it impacts little on 

the accuracy of the prediction. Hence, choosing a higher 

P results in the lowest MSE without impacting on the TC. 

Since the WS is the pivoting parameter to design the 

ANN, it is interesting to derive the percentage variation 

of MSE and TC between the levels of the WS to 

understand when it is convenient to expand the WS. The 

goal is to reduce the MSE as much as possible while 

keeping TC low. Looking at TABLE II, the most 

convenient transitions are 25-50 and 50-100, for which a 

good improvement in accuracy does not correspond to an 

excessive increase of the TC. Considerations about the 

optimal values of the design parameters, just like the WS, 

are crucial, but also other factors must be considered in 

an industrial environment. The TC varies from 5 min to 

35 min. This temporal gap could have more or less large 

economic implications depending on the company. 

 

 

Fig. 9. MSE varying BS, P and WS 

 

TABLE II  

 PERCENTAGE VARIATION OF MSE AND TC  
 

BS P Transition MSE 

[%] 

TC 

[%] 
128 1 10-25 -22 +143 

128 1 25-50 -35 +62 

128 1 50-100 -30 +49 

256 1 10-25 -25 +129 

256 1 25-50 -31 +48 

256 1 50-100 -40 +58 

512 1 10-25 -25 +97 

512 1 25-50 -30 +78 

512 1 50-100 -40 +96 
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IV.  CONCLUSION 

This work describes systematically how to model and 

train an LSTM neural network to predict the RUL of a 

system subjected to continuous degradation for 

performing PdM. The NASA dataset for the turbofan 

engine was used to train and test the model. Before the 

training, the dataset had to be prepared. Specifically,  

output features (labels) for the training set and the test set 

have been derived at first. Then, linear correlation 

analysis was necessary to find correlated features. Since 

data are sequential, the sliding window algorithm was 

used to split the dataset into sub-sequences. An LSTM 

neural network has been trained through a variant of the 

backpropagation algorithm and validated by using the 

early stopping criterion. The script has been written in 

Python and executed in Google Colab and Pycharm. A 

sensitivity analysis with 36 experiments was carried out 

to assess the impact of the parameters BS, P and WS on 

the accuracy and performance of the ANN. The MSE and 

the computation time have been chosen as evaluation 

metrics. Experiments showed that: 

• The WS is the most influential parameter. Increasing 

the window size from the minimum to the maximum 

value allows to increase the MSE to 71%. However, 

the computational time also increases by about 80%. 

• Increasing Pearson the MSE decreases without a 

corresponding increment in TC. Thus, this evidence 

suggests not to exclude any features from the dataset. 

• The BS is the least significant parameter.  

This study proved that experiments are the better way to 

improve the performance of an ANN for the prediction 

of the RUL of equipment. Further studies will be 

conducted by implementing a more sophisticated ANN 

architecture, where “convolutional” layers are added to 

LSTM and dense layers in a deep neural network. 
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