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Abstract: In last years, we are facing on the diffusion of on-line orders, a process further accelerated by the spread of 
the COVID-19 virus. A fundamental lever in the use of the e-Commerce is the continuous reduction of the fulfillment 
time. In order to obtain these improvements, the storage method has been revolutionized. In fact, we are talking about 
Online order fulfillment warehouses (F-Warehouses) which, unlike traditional warehouses, have a very large number 
of small bin locations, an explosive storage policy, where an incoming bulk is separated into small lots stocked in any 
bin throughout the warehouse, and commingled bin storage. The divided warehouse (M-Division) with explosive 
storage is a novel design, where the warehouse is divided in M-zones managed by specific pickers. In this paper we 
model the fulfillment process as an N server queuing model with uniform service times and compare the fulfillment 
time of the traditional warehouse with the M-Division warehouse. In particular, an analytical solution assigns items to 
the M-Division warehouse in order to minimize the fulfillment time. The results show that the M-Division approach 
permits a reduction of the fulfillment time compared with the traditional one. 

Keywords: e-Commerce, F-warehouses, Queueing Theory 

1. Introduction 

The fulfilment and logistics systems of an online retailer 
typically involve one or more fulfilment centers and an 
associated parcel delivery network. In the case of Amazon, 
though, significant parts of the network are in-house 
operations. In particular, the core of Amazon is the 
software organization which provides complex algorithms 
and optimization programs that run the daily operations 
of the fulfilment centres. Onal et al. (2017) was one of the 
first to provide detailed insights into the operational flows 
within an Amazon fulfilment centre. They documented 
how sophisticated flow control models leverage new 
logistics and operational models to ensure fast fulfilment. 
They present a new paradigm in the operational design and 
control of warehouses, identifying six specific operational 
differentiators: 

• explosive storage policy - incoming bulk 
inventory is exploded into a large number of 
small lots which are then dispersed to storage 
locations throughout the warehouse; 

• very large number of beehive storage locations - 
storage is organized into small library style bins 
(13 cubic feet); 

• bins with commingled items - multiple items are 
simultaneously stored in an unorganized way in 
the same bin; 

• immediate fulfilment objective - customer orders 
arrive continuously throughout the day and the 
goal is for same-day shipment; 

• short picking routes with single unit picks - most 
orders are only for a single unit and the pick list 

retrieves several different items within a short 
pick zone; 

• high transactions volumes and total digital 
control - there is a much higher rate of 
store/pick movements per unit shipment, and all 
movements are modelled and instructed by a 
central controller. 

Together these differentiators uniquely describe a new 
approach to fulfilling online orders, and those 
characteristics are identical for all the Internet Fulfilment 
Warehouses (IFW). Moreover, it should be noted that 
each of the first three differentiators represents a radical 
change from the traditional storage management 
approach. In table 1 are reported IFW operational 
differences (Zhang et al. 2020). 

Table 1: IFW operational differences 

Attribute F-Warehouse Distribution 
Center 

Stock locations 
(bins) 

2,000,000 10,000 

Items (SKUs) 
Stocked 

100,000 6,000 

Orders 
Fullfilled/days 

40,000 4,000 

Inventory data 
records 

20 Milion 10,000 

In selecting an online retailer, two important criteria from 
a consumer perspective are price and fulfilment time. 
Fulfilment time is defined as the interval between a 
customer’s order placement and delivery to the customers 
location. In particular, faster fulfilment is a critical driver 
of success in online retail and is motivating customers to 
shift to online buying. In fact, a key component of IFWs 
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is customer order picking with the objective of immediate 
fulfilment. Recent papers use a location closeness 
partitioning algorithm to make a pick batch decision, while 
others derive an order picking throughput model with 
multiple pickers and aisle congestion. Rao and Adil (2017) 
developed analytical travel distance models for storage 
policies under across-aisle, within-aisle and a newly hybrid 
product placement schemes. De Koster et al. (2007) 
suggest that order picking for online demand is different 
and is akin to stochastic optimization problems. The 
storage location assignment problem (SLAP) is described 
by Gu et al. (2007) as assigning zones and locations (M-
Division) to incoming bulk to reduce material handling 
costs and improve space utilization. They found that the 
three common SLAP criteria are turnover-based 
assignment, class-based assignment and cube-per-order 
index. Xiao and Zheng (2010) studied a correlated storage 
location assignment problem where relationships are 
determined from a bill of materials. The SLAP class of 
problems is closely aligned to explosive storage in IFWs. 
The common location assignment policies are identified as 
random storage, closest open location storage, dedicated 
storage, full turnover storage, and class-based storage. 
Several studies have confirmed the advantages of a 
random policy, though, not conclusively. Petersen 
compared class-based storage to random storage. The 
results show that class-based storage when compared to 
random storage results in shorter picker travel distances. 
A solution is presented by Pang and Chan (2017), with a 
data mining-based random SLAP solution by extracting 
and analyzing the association relationships between 
different products in customer orders. Ho and Sarma 
(2009), on the other hand, modeled free form storage, 
where items are stocked in multiple locations, and showed 
that it can improve picker travel time. Another solution 
considered a warehouse arranged in multiple cells, and any 
arriving bulk could be split and stocked in one or more 
cells, with two possible policy, one based on chaining and 
the other on picker workload balancing. Weidinger and 
Boysen (2018) also considered a warehouse where 
incoming bulk was exploded and stored in multiple 
locations. They segmented the warehouse into several 
parts each of which has a defined delivery point where 
pickers deposit the items. The problem is formulated as a 
MIP and then initially solved by a p-center search 
procedure. They developed an adaptive binary search 
heuristic algorithm and compared it to a random storage 
assignment. Weidinger and Boysen (2018) used a 
simulation model to confirm that their approach 
decreased picker travel distances as the number of 
measuring points increased. 

In a shared storage policy multiple SKUs are stored in the 
same location thus increasing space utilization. Some 
research showed that a duration-of-stay-based shared 
policy is optimal under an assumption of perfectly 
balanced inputs and outputs. Cormier and Gunn (1992) 
states that shared storage policies offer excellent potential 
for travel time and rack size reductions. Commercial 
warehouse management systems apply three well-known 
methods: S-shape strategy, Return strategy and Zig-zag 
strategy. Aisle layout is also an associated problem since 
cleverly designed aisles could reduce pick travel distance. 

Various researchers propose several such designs. 
However, they pointed out that IFWs typically use a 
classical rectangular row layout. Won and Olafsson (2005) 
consider the joint objective of low picking time and faster 
customer response time. They proposed a batching and 
order picking solution using simple heuristics. Tsai, Liou, 
and Huang (2008) propose a batch picking model that 
considers also an earliness and tardiness penalty with a 
focus on quick-response. Traditional warehouses store a 
SKU either in a set of contiguous dedicated or random 
locations or slots. In either case, the number of storage 
locations for a specific SKU is few (<10) to preserve the 
bulk. In contrast, in an IFW the incoming bulk is 
immediately broken into unit SKUs upon arrival. The 
exploded units are then dispersed to bins throughout the 
warehouse. The bins could be random or prescribed by a 
rule, and each bin could receive several units of the same 
SKU. Onal et al. (2017) describe this as an explosive 
storage policy: the bulk SKU is exploded into E storage 
lots of one or more units such that no lot contains more 
than 10% of the received quantity. The lots are then stored 
in non-contiguous bins anywhere in the warehouse. Let i 
∈ N be the unique SKUs stored in the warehouse, Ei the 
explosion factor and Vi the current total warehouse 
inventory for i, and Li the number of unique bins where it 
is stocked. Then we introduce:  

Explosion Ratio for product i = 𝜓! =
"!
#!

 

Warehouse Explosion Ratio = 𝜓$ =
∑ "!!∈#
∑ #!!∈#

 

Li is not simply equal to Ei. Since bulk batches are arriving 
at some interval, every explosion will send the lots to both 
existing and new locations. At the same time fulfilment is 
occurring, thus Li is changing constantly and Ψi is time 
variant. The warehouse explosion ratio is then an 
inventory weighted function. An explosive strategy will 
significantly improve fulfilment time and IFWs should 
operate between Ψ0 = 0.1 and 0.8 where the picking 
opportunities are maximized; further explosion generates 
only redundant opportunities. 

In this paper we model the fulfillment process as an N 
server queuing model with uniform service times and 
compare the fulfillment time of the traditional warehouse 
with the M-Division warehouse in order to evaluate 
differences. In particular, the focus of the research is only 
on the warehouse activity. The reminder of the paper is 
structured as follows. The problem definition, notation 
and assumptions are in Section 2. The development of the 
model is in Section 3. The application of the model and 
simulation is introduced in Sections 4. A summary of the 
paper, its main findings, and future developments of the 
present work are in Section 5. 

2. Problem and assumptions 

It is clear that the concept of fast fulfillment requires that 
an incoming sales order be immediately collected and 
processed. If the latter is collected within an hour, then it 
can be packed and shipped within hours of receiving it. In 
practice we have that the speed with which an item is 
picked is a function of how much it is stored near a picker: 
the greater the distance between the operator and the 
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object to be picked, the greater the time needed to 
complete the task. The proximity of the article to a selector 
can be described by a probability model which is a 
function of the storage policy adopted by the system. As 
we have seen, one of the key features of Internet 
Warehouse Fulfillments is the adoption of an explosive 
storage policy, which divides the incoming supplies into 
many small batches and then distributes them throughout 
the warehouse and this consequently increases this 
probability. In fact, the problem presented here deals with 
the storage policies adopted, comparing the traditional 
approach, with a single department store that processes all 
the orders, and the more recent one, which divides the 
orders among several locations. By expanding the number 
of storage locations, the probability of quick fulfillment 
for a given item increases, and therefore the goal is reached 
more easily. To demonstrate this concept, we present two 
examples: 

• 16-location storage policy; 

• 64-location storage policy. 

In the first example we find that each picker has immediate 
access to four positions, if there is only one article it is 
available in all 16 positions and the probability of rapid 
evasion of the same is equal to 100%. Furthermore, as the 
number of products increases, this probability decreases 
and, as the number of locations increases, it increases. This 
organization shows strong limitations as already with 8 
products, and even by exploiting 4 positions, the 
probability of immediate evasion is equal to 50% and with 
16 objects it further decreases to 25%. 

 
Figure 1: Graphic representation of a 4x4 warehouse. 

By decreasing the size of the cells and arriving at an 8x8 
matrix arrangement, the number of locations to which the 
individual pickers have immediate access increases to 16. 
Even with 16 items each can be stored in four different 
locations and you get a 100% fast withdrawal probability 
for all items. As the number of stocked items increases and 
therefore expands the number of stocking positions, a 
probability of rapid fulfillment of 100% is maintained. It 
can be seen by comparing in the Table 2 the two 
configurations that the performances in the second case 
are considerably improved. 

Table 2: Probability of quick evasion. 

Stock Items Case 

 4x4 8x8 

1 1 1 

2 1 1 

4 1 1 

8 1/2 1 

16 1/4 1 

 
Figure 2: Graphic representation of a 8x8 warehouse. 

However, the fact that orders are processed from different 
locations is not a guarantee of a satisfactory order 
fulfillment time for the competitive and commercial 
purposes of an IFW. Therefore, a further problem arises 
of assigning items in the warehouses, having to choose 
which destination to assign a certain object and in what 
quantity. 

The objective of this research is to compare the traditional 
warehouse configuration, where in a unique partition are 
stocked all the SKUs and where the pickers work at the 
same time in the same area, with the IFW configuration, 
where the SKUs are assigned to specific partitions (M-
division) and only one picker works in a specific partition 
at the same time. In the specific, the final goal is to 
compare the two configurations in terms of fulfillment 
time and saturation of the pickers. The fulfillment time is 
calculated as the difference between the arrival time of one 
order and the delivery time of the same order. For 
simplicity, the order requests only one SKU and the order 
strategy is “order picking”. In the next figures the process 
flow of the two configurations considered are shown. 

 
Figure 3: Process flow of the Traditional warehouse 

configuration. 

 
Figure 4: Process flow of the IFW configuration (with 

M=4). 

In the case of the traditional configuration, after the arrival 
of one order, the pickers start the process and pick-up the 
related SKU in the warehouse. After that, the SKU is 
moved to the packing area where another operator 
prepares the pack for the delivery. In the case of IFW 
configuration, when the order arrives, before it is assigned 
to a specific partition, then the specific picker start the 
process and pick-up the related SKU in the partition of 
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his/her competence. After that, the SKU is moved to the 
packing area where another operator prepares the pack for 
the delivery. The packaging is not considered in this study 
for simplicity. 

Summarizing, we assume that: 

• Item demand is exponential. 

• Picking time is uniform and a function of 
partitions in case of IFW configuration. 

• Pickers cannot work in other partitions. 

• Each order is only for a single item. 

3. Model 

In order to solve the problem, we define an open queueing 
network with exponential arrival time and uniform service 
time. In the figure 5 and 6, we show the schemas of the 
open queuing network in the case of traditional 
configuration and IFW configuration. We model the two 
networks with an open Jackson networks with exponential 
arrival rate and finite number of servers. The network for 
the traditional warehouse configuration is simply a node 
with M servers, while for the IFW configuration, we have 
parallel nodes with one server. 

 
Figure 5: Open Jackson Networks for Traditional 

warehouse configuration. 

 
Figure 6: Open Jackson Networks for IFW configuration. 

In the case of traditional configuration, we model the 
warehouse with M picking servers. So, the picking activity 
is modeled with a M/G/c queueing model, where the 
number of resources 𝑐 = 𝑀. The server has a specific 
uniform service distribution. Following, we show the 
notation and the model for the traditional warehouse: 

• i = 1,…,N: number of Items 

• M: number of pickers 

• k: number of orders 

• tk : arrival time 

• 𝜏&: delivery time 

• l = average arrival rate (orders) 

• µ = average service rate (picking) 

• s = service standard deviation 
(picking); 

In order to evaluate the fulfillment time, it is necessary to 
calculate the difference between the delivery time tk and 
the arrival time tk. By using the queueing theory 
formulation this difference in the case of traditional 
warehouse is equal to: 

𝜏& − 𝑡& =
𝐶' + 1
2

𝜌(𝜌𝑀)($𝜋$
𝜆𝑀! (1 − 𝜌)' 			(1) 

where: 

𝜌 =
𝜆
𝑀𝜇			(2) 

𝜋$ = 5 6
(𝑀𝜌))

ℎ! +
(𝑀𝜌)($
𝑀! (1 − 𝜌)

($*+

),+

8

*+

			(3) 

𝐶 =
𝜎
𝜇 			(4) 

In the case of IFW configuration, we model the warehouse 
with an open Jackson network with M parallel picking 
servers. So, the M picking activities are modeled with 
M/G/1 queueing model. The server has a specific 
uniform service distribution. In particular, we have to 
consider that the items are distributed, with respect to the 
demand, with a discrete distribution. For simplicity we 
consider in the present work a homogeneous distribution 
of the items equal to 1/N, where N is the number of items 
considered. The presence of M warehouses leads to the 
assignment of the picking task to a specific picker. In order 
to model this condition, we introduce the variable xji that 
is the assignment of the picking task for item i to the 
warehouse or picker j. Following, we show the notation 
and the model for the IFW: 

• i = 1,…,N: number of Items; 

• j = 1,…,M: warehouse partitions; 

• pi: items distribution; 

• xji: assignment of the picking task for 
item i to the warehouse j; 

• k: number of orders; 

• tk: arrival time; 

• 𝜏&: delivery time; 

• l = average arrival rate (orders); 

• µj = average service rate (picking); 

• sj = service standard deviation 
(picking); 
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In the case of IFW configuration the fulfillment time is 
equal to: 

𝜏& − 𝑡& =6<6 𝑝!𝑥-!
.

!
? @

𝜆-'𝜎-' + 𝜌-'

2𝜆-A1 − 𝜌-B
+
1
𝜇-
C

/

-

(5) 

In the case of IFW configuration, in order to solve the 
assignment problem, it is necessary to introduce the 
following constraints: 

𝜆- = 𝜆∑ 𝑝!𝑥-!.
!  with j = 1,…,M   (6) 

∑ 𝑥-! = 1/
-  with i = 1,…,N   (7) 

𝜆- 𝜇-F < 1 with j = 1,…,M   (8) 

𝑥-! > 0 with j=1,…,M and i=1,…,N   (9) 

where the constraint (6) represents the application of the 
Jackson Theorem for the calculation of the arrival rate for 
every warehouse, in the constraint (7), the sum of the 
assignment variable is equal to one and greater than zero 
(9). In constraint (8), the saturation index for every 
warehouse has to be lesser than 1 in order to have the 
convergence of the queuing system. We validate the 
analytical model by using a simulative model coded in 
Anylogic®. The problem is solved using the software 
LINGO®. 

4. Parameters setting and application 

In this section we explain the value for every parameter 
and the scenarios simulated. In order to carry out the 
simulations, a series of simplifying hypotheses are made. 
Among these various are in common between the two 
models created and analyzed: 

• The distribution of demand is known and 
exponential. 

• The demand for the different items is unknown, 
but each type of order is assigned the same 
probability of being generated. 

• Each order contains one and only one item. 

• The warehouses have no size constraints and can 
store all types of items. 

In the specific, we model the items demand as exponential 
distribution in order to have a random behavior of the 
items arrival in the system. Moreover, in order to simplify 
the case study, we assume that each order considers only 
one item and the warehouses can store all types of items. 

In the following table, we list the different parameters with 
the reference value: 

Table 3: Parameters and settings 

Parameter Value 

N 40 

l  

µ 8 

µj 4,5 

s 0,57 

sj 0,86 

pi 2.5% 

M 3 

In particular, N is the number of items considered, µ is the 
average service rate in the case of traditional configuration, 
while µj is the average service rate in the case of IFW. The 
value of µj is lower than µ because the physical area for 
every picker in the case of IFW is lower (we assume a 
reduction of about 50%). Pi is the probability distribution 
of the items with respect to the demand; in this case we 
assume a probability equal to 1/N. 

In the case of the IFW configuration, the definition of the 
solution leads to the minimization of the average 
fulfillment time by optimizing the assignment variable xij.  

5. Results 

In this section we compare the results obtained from the 
two configurations under examination to understand 
which of the solutions offers performance best suited to 
the final purpose with respect to the fulfilment time and 
the saturation of the pickers. For the simulations of the 
two configurations an exponential distribution at the input 
was used with mean values l ranging from 3.5 to 6 and 
with increases of 0.5, thus reaching a total of 6 distinct 
scenarios.  

As shown in figure 7, the IFW configuration finds sense 
of application even with much higher order generation 
frequencies, thus ensuring operation even with much 
higher workloads. The traditional configuration on the 
other hand does not allow for satisfactory performance 
below the generation Mean Value of 3.5, further 
underlining how it is not suitable for use in online sales. 
Looking at the detail, we can also observe that the IFW 
configuration tends to the horizontal asymptote much 
faster than the other. The gap between the second 
simulation and the last (Mean Value 4.0 and 6.0), in the 
fast fulfillment model, is only 0.62 units, while in the first 
case this difference is 1.45. 

 

 
Figure 7: average fulfillment time comparison. 

Finally, by comparing the average saturation in figure 8, 
we show that the IFW has an average saturation for all the 
scenarios lower than the traditional configuration. 
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Figure 8: average saturation comparison. 

So, we can conclude that in case of IFW configuration by 
increasing the number of warehouses, and optimizing the 
distribution of products among them, the average order 
fulfillment time of the system decreases, albeit at the 
expense of operator saturation increasing. 

6. Conclusions and future research 

This study sought to answer the question: “Does the new 
approach adopted by IFWs actually perform better than 
the traditional one?”. For this purpose, an optimization 
model was conducted in order to verify and compare the 
effectiveness of a traditional approach to the more recent 
one adopted by Internet Fulfillment Warehouse - IFW. 
These models were tested with different parameters, 
varying the average generation time in the exponential 
distribution in order to compare the two configurations 
with respect to the fulfilment time and the pickers 
saturation. 

The results obtained from these simulations show that the 
IFW significantly performs better than the traditional 
configuration in terms of fulfilment time, but not in terms 
of pickers saturation. In fact, in IFW configuration, the 
emphasis is placed on fulfillment time, as the final 
customer expects the items to be delivered in ever shorter 
times as an essential condition. From the other hand, the 
traditional configuration maximizes in the same scenarios 
the saturation of the pickers, despite to the increasing of 
the fulfilment time. To further validate the results 
obtained, the models themselves should be gradually 
expanded to reflect more concrete operating conditions, 
considering factors such as the packaging activity, “last 
mile delivery time”, item procurement time and presence 
of orders with multiple items. 
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