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Abstract: Order picking is one of the most critical activities in warehouses as being the most labor intensive with costs 
that can be up to 55% of total warehouse expenses.  In this context the right sizing of picking workforce is decisive 
and has to guarantee a satisfactory service level. In this paper, workforce resizing for warehouse picking activities, was 
investigated in the light of the growth of receptivity required by one of the commissioning firms. Given the high labour 
intensity in the picking activities, the first phase of our analytical framework for the workforce resizing includes a 
statistical validation of the law of diminishing returns, which can be viewed as an effect of the free-rider behaviour, 
and then (i.e., second phase) a fitting approach of the said law; the curve that best fits the historical data is used in the 
third phase to forecast the future productivity. The last phase is made of an analytical procedure to derive the average 
future required number of ordinary and overtime pickers. We applied our framework in a real warehouse for a firm in 
the fashion sector, results highlighted a necessity for workforce increase, compared to the “as-is” scenario; this will 
allow the firm to strategically identify future workforce size requirements, from a cost-based perspective. 
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1.Introduction 

The warehouse is a fundamental facility to store and 
consolidate products, reduce transportation costs, 
achieve economies of scale in manufacturing or 
purchasing (Bartholdi and Hankman, 2016), while 
providing shorter operational or logistical response 
time (Gong and De Koster, 2008). Warehouses can be 
classified based on different criteria. Ghiani, Laporte 
and Musmanno (2004) classified them into production 
or distribution centres and proposed a further 
classification based on their ownership: company-
owned, public, and leased warehouses. Another 
possible classification is proposed by Bartholdi and 
Hankman (2016) according with the customer service 
type: retail distribution centre, with service parts 
distribution centre, a catalogue fulfilment or e-
commerce distribution centre.  Even if warehouses are 
heterogeneous, the material workflow typically 
includes the following warehouse operations: 
receiving, put away, internal replenishment, order 
picking, accumulating and sorting, packing, cross 
docking, and shipping (Tompkins, J.A, White, J.A., 
Bozer, Y.A., Tanchoco, 2003). Between these 
activities, the “order picking”, that is the retrieval 
activity of products to fulfil orders, is crucial to ensure 
the right service level for customers. It is also an 
expensive activity that, according to Bartholdi and 
Hankman (2016), contributes to about 55% of the 
operational costs. Indeed, order picking has been well-
researched in literature where we can find significant 
research reviews (e.g., de Koster, Le-Duc and 

Roodbergen, 2007; van Gils et al., 2018). The main 
problems arising in the design of an order picking 
system may be addressed through three main levels: 
strategical, tactical and operational levels (Anthony, 
1965; Rouwenhorst et al., 2000). At the strategical level, 
the selection of automation intensity as well as the 
equipment for the material handling represents the 
main problems. The reader can refer to Rouwenhorst 
et al. (2000) and Davarzani and Norrman (2015). 
Actually, the decisions taken at this level influence and 
constrain the subsequent levels. At the tactical level, 
the main problem arising concerns the resource sizing 
in terms of storage capacity, relative warehouse area as 
well as the workforce (van Gils et al., 2018). Finally, for 
the operational level, the main problems identified as 
job assignment and batch creation (Gu, Goetschalckx 
and McGinnis, 2010).  In literature we can find  various 
review that focused on an individual planning 
problem: Rouwenhorst et al. (2000), Davarzani and 
Norrman (2015), (Marchet, Melacini and Perotti, 
2015), (Gong and de Koster, 2011). Howehever we 
have a scarsity of paper that combine different 
different planning problem has demonstrated in a 
dedicated review (van Gils et al., 2018) where ten 
different planning problem were identified but only 26 
over a total of 45 possible combination of these 
planning problem have been addressed in literature. In 
this context we position this research paper at the 
tactical level, with the aim of re-sizing the workforce 
and re-designing the picking area of an outsourcing 
warehouse of fashion items in order to meet the 
growth of receptivity forecasted for year 2025 and this 
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is a first attempt to fulfil the individuated gap. Since 
the various firms are managed in dedicated areas that 
are clearly separated, we refer to the warehouse as the 
area dedicated to the commissioning firm taken into 
consideration. As already stated, the decisions taken at 
the strategical level influence and constrain the 
subsequent levels, and this is confirmed in our case. 
Indeed, at the strategic level, the intensity of 
automation has been set to the lowest level possible 
with a full manual order picking system. This aims to 
limit fixed investments since the contracts with the 
commissioning firms are renewed on average every 
five years. Another constraint refers to the warehouse 
layout, which must be redesigned by making as few 
changes as possible to reduce costs. As established in 
previous literature (Pohl, Meller and Gue, 2009), the 
manual picking activities highly impact the warehouse 
performances, therefore flying-V and fishbone layouts 
are proper options to be able to reduce the travel 
distance up to 20% in single command operations. 
Nonetheless, two rules are often adopted in practice to 
design warehouses: i) picking aisles have to be straight 
and parallel; ii) cross aisles, if present, have to be 
straight and meet the picking ones at right angle (Gue 
and Meller, 2009). The concerned warehouse 
implements these two rules, and this is presented in 
detail in the case study, but it can be anticipated that 
the aisles were designed to maintain their 
characteristics unchanged except their isles length to 
meet the growth of the required receptivity. For the 
purpose of workforce re-sizing, and in order to derive 
the expected number of operators required in 2025 we 
investigate an analytical framework that can be useful 
for practitioners in similar situations.  First, the 
researchers analysed data about the workforce 
productivity in 2019 and validate statistically via 
ANOVA test (Shaw and Mitchell-Olds, 1993) the 
hypothesis that the mean individual productivity 
depends on the number of operators involved in 
picking activities. Specifically, we prove that the mean 
individual productivity decreases with respect to 
increased number of operators. This confirms the law 
of diminishing returns (Shephard and Färe, 1974) and 
the so-called “freeride behaviour” (Albanese and Van 
Fleet, 1985) that affect groups, i.e. “In a wide range of 
situations, individuals will fail to participate in 
collectively profitable activities in the absence of 
coercion or individual appropriable inducements” 
(Stigler, 1974), and this is related to the group size. 
After having proved statistically that a freeride 
behaviour affects the groups of worker a firm can 
implement various strategy, the most used in literature 
is the creation of competition among groups (Erev, 
Bornstein and Galili, 1993), (Chen, 2020). After 
conducting the statistical validation, researchers fit the 
law of diminishing returns by means of a power law 
with plateau relationship as being the best-fitting curve 
among those tested. Then, they use this curve to 
forecast the productivity distribution by varying the 
number of operators. This is the input of the last step 
of this research, which aims to derive the expected 
number of both ordinary and overtime operators 

necessary to guarantying the set customer service level. 
As far as our knowledge goes this is the first wok that 
address the problem of workforce resizing including a 
fitting procedure to forecast the workforce 
productivity in relation to the law of diminishing 
return and to the free ride behaviour while taking into 
consideration also the re-design of the picking area. 
This enables our work to be exploited by practitioners 
in situations that requires a workforce resizing for 
picking operations in a context of mainly manual work. 
This paper is structured as follows: Section 2 contains 
the notation and the framework of the proposed 
research framework, which will be explained step by 
step; Section 3 reports for the case study; and Section 
4 provide conclusions and suggestions for the future 
research progress. 

2. Notation and framework 

This section contains the adopted notation and the 
research framework. 
 
𝑡 = 1. . 𝑇: days in the reference period. 

ℎ𝑡: total number of items picked in day-t, [
𝑢𝑛𝑖𝑡

𝑑𝑎𝑦
]. 

𝑂𝑟: maximum number of operators at work observed 
in the reference period. 

𝑂𝑚𝑖𝑛: minimum number of operators at work in the 
historical reference period. 
𝑂𝑚𝑎𝑥: maximum number of operators allowed for the 
future. 
𝑖 ∊ 𝐼 = {𝑂𝑚𝑖𝑛 , 𝑂𝑚𝑎𝑥}: number of operators [op]. 
𝑖𝑡: number of operators at work in day-t. 
𝑇𝑖:  number set of days where i-operators worked with 

𝑖: 𝑂𝑚𝑖𝑛 < 𝑖 ≤ 𝑂𝑟. 

ℎ𝑡̅: mean individual hourly productivity in day-t, [
𝑢𝑛𝑖𝑡

ℎ∗𝑜𝑝
].    

𝐻𝑖: set of mean individual hourly productivity when i-
operators worked. 
𝑃𝑖: mean hourly individual productivity in a group of i-
operators in the reference period, with 𝑖: 𝑂𝑚𝑖𝑛 < 𝑖 ≤

𝑂𝑟 , [
𝑢𝑛𝑖𝑡

ℎ∗𝑜𝑝
]. 

𝑉𝑖: variance of the mean hourly individual productivity 
in a group of i-operators in the reference period 

with 𝑖: 𝑂𝑚𝑖𝑛 < 𝑖 ≤ 𝑂𝑟 , [
𝑢𝑛𝑖𝑡

ℎ∗𝑜𝑝
]

2

. 

𝑃′
𝑖:  forecast of the mean hourly individual productivity 

in a group of i-operators with 𝑖: 𝑂𝑟 <  𝑖 ≤ 𝑂𝑚𝑎𝑥, [
𝑢𝑛𝑖𝑡

ℎ∗𝑜𝑝
]. 

𝑉′
𝑖: forecast of the variance of the mean hourly 

individual productivity in a group of i-operators with 

𝑖:  𝑂𝑟 <  𝑖 ≤ 𝑂𝑚𝑎𝑥, [
𝑢𝑛𝑖𝑡

ℎ∗𝑜𝑝
]

2

. 

𝑃𝑠: set of the mean hourly individual productivity 
defined as the union of 𝑃𝑖  and 𝑃′

𝑖. 

𝑉𝑠: set of the variance of the mean hourly individual 
productivity defined as the union of 𝑉𝑖  and 𝑉′

𝑖 . 

𝐶𝑘:  Class created to subdivide the ℎ𝑡 with 𝑡 = 1. . 𝑇, 𝑘 =

1. . 𝐾, 𝐾 <= 𝑇 

[𝑙𝑘 , 𝑢𝑘[:lower and upper bound for 𝐶𝑘with 𝑙𝑘+1 = 𝑢𝑘  with  

𝑘 = 1 … 𝐾, [
𝑢𝑛𝑖𝑡

𝑑𝑎𝑦
] where only the last class contains its 

upper bounds. 

𝑤 = width of the classes calculated as 
𝑢𝐾−𝑙1

𝐾
. 

𝑚𝑘: centre of 𝐶𝑘 , with 𝑘 = 1 … 𝐾, [
𝑢𝑛𝑖𝑡

𝑑𝑎𝑦
]. 

𝑓𝑘: frequency of 𝐶𝑘 with 𝑘 = 1 … 𝐾.
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𝑔𝑝: % forecasted growth for the picked quantities. 
𝐸𝑝: expected number of ordinary operators required. 
𝐸𝑠: expected number of overtime operators required. 
𝑚′𝑘:center of class-k increased by 𝑔𝑝 with 𝑘 = 1 … 𝐾. 

SL: service level in terms of percentage of ℎ𝑡 to be 
delivered in t. 
 

2.1 Framework  

This section illustrates the research framework 
implemented: 

i) Data collection: researchers collected all the relevant 
data for the further analysis. Basically, there is a need 
to derive the mean historical individual productivity of 
pickers based on their number and subdivide in ranges 
the outbound quantities in the historical reference 
period. Collected data includes the total picked 
quantities and the number of pickers at work dedicated 
to the activity full time (i.e., 8 hours in this case) for 
the reference period. Additionally, researchers need all 
the information about the current warehouse layout, 
capacity, material handling system and constraints for 
its expansion as well as growth percentage forecasted 
for both the maximum storage capacity and the picked 
quantities.  

Input data: 

➢ Days in the reference period indexed as: 𝑡 =

1. . 𝑇. 
➢ Total number of items picked per day (ℎ𝑡). 

➢ Number of operators at work per day (𝑖𝑡). 

➢ Maximum number of operators allowed in 
the future (𝑂𝑚𝑎𝑥). 

➢ Classes in which we subdivide the 
productivity in order to obtain a significant 
incidence of every class. This study considers 
significant a class incidence higher than 1% 
([𝑙𝑘 , 𝑢𝑘[ , 𝑘 = 1 … 𝐾).  The said classes are used 
to refer the further calculations to their mean 
values, that is their probability masses (i.e., 
relative frequencies 𝑓𝑘).  

➢ Service Level (SL). 
 

Hp1: 8 working hours per day per operator are 
allowed. 

Hp2: the mean individual productivity of every group 
of operators is normally distributed with mean and 
variance respectively equal either to 𝑃𝑖 and 𝑉𝑖, with 

𝑖: 𝑂𝑚𝑖𝑛 < 𝑖 ≤ 𝑂𝑟, or to 𝑃′𝑖 and 𝑉′𝑖, with  𝑖: 𝑂𝑟 <  𝑖 ≤ 𝑂𝑚𝑎𝑥. 

Derived input data: 

➢ 𝑇𝑖 = {𝑡: 𝑖𝑡 = 𝑖} 

➢ ℎ𝑡̅ =
ℎ𝑡

8∗𝑖𝑡
  

➢ 𝐻𝑖 = {ℎ𝑡̅: 𝑡 ∊ 𝑇𝑖} 

➢ 𝑂𝑟 = 𝑚𝑎𝑥𝑡=1..𝑇{𝑖𝑡} 

➢ 𝑃𝑖 =
∑ ℎ𝑡̅̅ ̅𝑡∊𝑇𝑖

|𝐻𝑖|
 , with 𝑖: 𝑂𝑚𝑖𝑛 < 𝑖 ≤ 𝑂𝑟 

➢ 𝑉𝑖 =
∑ (ℎ𝑡̅̅ ̅̅̅−𝑃𝑖)^2𝑡∊𝑇𝑖

|𝐻𝑖|
 , with 𝑖: 𝑂𝑚𝑖𝑛 < 𝑖 ≤ 𝑂𝑟  

➢ 𝑚𝑘 =
(𝑢𝑘−𝑙𝑘)

2
 

➢ 𝑓𝑘 = 𝑃𝑟 {𝑙𝑘 < ℎ𝑡 ≤ 𝑢𝑘} 

➢ 𝑚′=𝑚𝑘 ∗ (1 + 𝑔𝑝) 

➢ 𝑃𝑠 = {𝑃𝑖 ⋃ 𝑃′𝑖 } 

➢ 𝑉𝑠 = {𝑉𝑖 ⋃ 𝑉′𝑖 } 

 

ii) ANOVA: we carry out an ANOVA test on the 
elements of 𝐻𝑖 (i.e., response) to statistically validate 
that they belong to different populations varying with 
the number of employed operators (i.e., factor). In 
particular, we use an un-balanced ANOVA (Shaw and 
Mitchell-Olds, 1993; Schiff and D’Agostino, 1996) 
because the samples showing different cardinalities. 

iii) Fitting of the law of diminishing returns: we fit the 
curves that describe decreasing trends for both of 𝑃𝑖 

and of 𝑉𝑖 by increasing the number of operators. The 
said curves are then used to forecast 𝑃′

𝑖 and 𝑉′
𝑖, 

respectively, when (𝑂𝑟 <  𝑖 ≤ 𝑂𝑚𝑎𝑥). In particular, we 
use a linear model (1), a quadratic model (2), a power 
law of the first (3) and second order (4) as well as a 
negative exponential model (5). We benchmark them 
in terms of Squared Sum of Errors (SSE). The research 
reports on the below the examples not only of the 
curves for 𝑃′𝑖 but what they hold also for 𝑉′

𝑖. 

𝑃′𝑖 = 𝑎 ∗ 𝑖 + 𝑏     (1) 
𝑃′𝑖 = 𝑎 ∗ 𝑖2 + 𝑏 + 𝑐     (2) 
𝑃′𝑖 = 𝑎 ∗ 𝑖𝑏     (3) 
𝑃′𝑖 = 𝑎 ∗ 𝑖𝑏 + 𝑐     (4) 
𝑃′𝑖 = 𝑎 ∗ 𝑒𝑖∗𝑏 + 𝑐     (5) 
 

At the end of this step, researchers choose the best-
fitting models, i.e. those giving the lowest SSE, and 
calculate the forecasted 𝑃′𝑖 as well as 𝑉′

𝑖 till 𝑂𝑚𝑎𝑥. 

------------------------------------------------------- 

Procedure n_op 
[find,n,qleft]=n_op(q,LS,Ps,Vs) 
find=false; n=0; qleft=0; 
for (every number of operator i in    
Omin..Omax)do{ 
if (i is comprehended in [Omin,Or]) then 
x is Normal distributed 
with mean= Pi*i*8 and variance= Vi*i^2*8^2 
else 
x is Normal distributed 
with mean= P’i*i*8 and variance= V’i*i^2*8^2 
end-if 
c=Cumulative density function of x 
calculated in q 
     if (c>LS) then 
   find=true; 
   n=i; 
       end-if 
 end-do 
 if (find=false) then 
n=Omax; 
find=false; 
qLeft=q*(1- c); 
end-if 
end 

------------------------------------------------------- 

Procedure Exp_op 
[Ep,Es]=Exp_op(K,fk:k=1…K,Ps,Vs,m’k:k=1…K) 
Lek:number of ordinary operator required for 
class-k of picked quantities; 
LSk: number of straordinary operator required 

for (every k-class)do{ 
[find,n,qleft]=n_op(q,LS,Ps,Vs); 
Lek=n; 
if (find=false)    
 [find,n,qleft]=n_op(qlef,
LS);    
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 if(find=true) 
  Lsk=n; 
 else 
display(‘We cannot satisfy the demand of the 
%k% class the maximum number of operators 
have to be increased’) 
end-do 
    Ep=Cross Product(Lek,fk); 
    Es=Cross Produc(Lsk,fk); 

------------------------------------------------------- 

 

iv) Analytical procedure: we derive the expected 
number of required operators by means of the 
procedure explained in the form of the following 
pseudo-code. 

The first procedure is used to find the required number 
of operators to pick a certain quantity (q) given the 
mean and the variance of the individual productivity 
of groups (𝑃𝑖, 𝑉𝑖), which were derived also for groups 
of operators never seen before (𝑃′𝑖, 𝑉′𝑖), and the service 
level required as defined in our notation (SL). If the 
maximum number of operators considered cannot 
pick all the q items, the procedure returns the left 
quantity to be picked. In order to do this, we create a 
normally distributed variable with mean and variance 
given by the mean individual productivity of the group 
multiplied by the number of hours in a day (8h), and 
by the number of operators within the group. The 
same holds true for the variance with its rules for the 
linear combination. This will allow achieving the 
distribution of the group daily productivity for which 
we can calculate the cumulative density function for 
the required number of items picked. If this value is 
greater than the service level, we can state that at least 
LS percentage of the items will be picked by the group, 
and we choose this number of operators. Otherwise, 
we look at a greater group till the maximum number 
of operators that can be employed can pick the value 
q. If it is not feasible, the procedure provides as output 
for the left items to be picked. We use this procedure 
in our main part of the code to derive the expected 
number of ordinary and overtime operators (𝐸𝑝, 𝐸𝑠). 
Specifically, for every class-k of picked quantities we 
look for the first group that can satisfies the picked 
quantities required with the n_op procedure. If we find 
a group that satisfies q in class-k, we save it in a list 

(Lek). Otherwise, we have to use the maximum 
number of operators required, calculate the left items 
with n_op exploiting the normal distribution and apply 
another time n_op with the left quantity as input. The 
required number of overtime operators is therefore 
achieved, which is stored in another list. Also 
considering the overtime, if there is no group that can 
finish the left items, we display a suggestion for 
increasing the maximum number of operators allowed 
per shift. At the end, we obtain the expected number 
of required operators, both ordinary and overtime, by 
means of the cross product between the number of 
operators required for each class of picked quantities 
and the frequencies of each respective class.  

3. Case study 

In this section we present the application of the 
research framework to a real case study coming from 
the fashion sector. Given the aforementioned 
warehousing categorisations, the warehouse taken into 
consideration in this research falls within the 
categories of distribution centres, leased warehouses 
and retail distribution centres. In particular, we 
consider only the warehouse area devoted to one of 
the commissioning firms. Focusing this analysis on the 
shoes management since they occupy about 95% of 
the warehouse area. The said firm provides a 
forecasted growth for the maximum capacity required 
of 141% and three possible values of the growth for 
the picked items per day (𝑔𝑝): 30%, 40%, and 50 %. 
These three values correspond to three different 
scenarios in this case study. For the historical analysis, 
we take as reference a period of 380 working days that 
ranges from May 2019 to December 2020. In this 
period, we derive the picked items per day as well as 
the number of operators employed in the picking 
activities. The researchers observe a minimum number 

of operators of 3 (𝑂𝑚𝑖𝑛) and a maximum of 18 (𝑂𝑟). 

With regard to the maximum number of operators 
allowed for the future (𝑂𝑚𝑎𝑥), we use three different 
values (25, 30, and 35) so that we consider 9 scenarios 
in total.  Moreover, the firm requires a minimum 
service level (SL) of 90% (i.e., percentage of items 
picked per day over the total)

 

Table 1: Values for 𝑷𝒊, 𝑽𝒊. 

𝑖 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

𝑃𝑖  168.4 131.3 125.6 159.5 139.0 131.6 126.3 118.6 121.2 119.9 107.8 110.5 104.6 114.8 124.5 110.2 

𝑉𝑖  50.4 56.1 48.0 36.0 69.6 55.2 52.6 40.8 30.4 39.3 35.8 38.7 24.0 40.4 23.0 27.2 

 |𝐻𝑖| 7 8 23 31 37 47 42 51 41 24 24 16 8 8 8 5 

Table 1, report the mean individual productivity per 
number of operators as well as their variance and the 
number of observations for each group.  

We derive these data as described in the stage i) of the 
framework. It is also important to note that  𝑃𝑖 shows 
a clear decreasing trend, while increasing the number 

of operators. This data will be used as input in the 
ANOVA test, which aims to confirm statistically that 
the mean individual productivity inter group depends 
on the number of operators.  

The ANOVA test is unbalanced because sample sizes 
were different and provides a p-value of 2.9153e-04, 
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which confirms our hypothesis. In Figure 1, we report 
the ANOVA boxplot. 

 

Figure 1: ANOVA boxplot for 𝑷𝒊. 

After the ANOVA test, we carry out the fitting phase 
for 𝑃′𝑖 and 𝑉′𝑖   by benchmarking the already mentioned 
curves, whose results are reported in Table 2 for  𝑃′𝑖 
and in Table 3 for 𝑉′𝑖.  

As showed in Table 2, the best fitting curve in terms 
of SSE is the power law with plateau. This is also 
consistent with the situations since increasing till 
infinitum the number of operators does not result in 
zero mean productivity but with a productivity of 

68.37 [
𝑢𝑛𝑖𝑡𝑠

ℎ∗𝑁𝑟 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟
]. The power law with plateau fit is 

reported in Figure 2. 

Table 2: Parameters for the fit of  𝑷𝒊. 

  a b c SSE 
𝑃′𝑖 = 𝑎 ∗ 𝑖 + 𝑏  -2.80 155.4 \ 1,983 

𝑃′𝑖 = 𝑎 ∗ 𝑖2 + 𝑏 + 𝑐   0.26 -8.22 178.30 1,644 

𝑃′𝑖 = 𝑎 ∗ 𝑖𝑏  196.5 -0.20 \ 1,648 

𝑃′𝑖 = 𝑎 ∗ 𝑖𝑏 + 𝑐  144.9 -0.43 68.47 1,638 

𝑃′𝑖 = 𝑎 ∗ 𝑒𝑖∗𝑏 + 𝑐  159.4 -0.02 \ 1,895 

 

Figure 2: Power law with plateau fit for 𝑷𝒊. 

As visible in Table 3, the best fitting curve for 𝑉′𝑖 in terms 
of SSE is the power law with plateau. However, we 
exclude from the candidates all the curves that give a 
negative value for the variance with the maximum number 
of operators (i.e., 35). We exclude the linear and quadratic 
curves and also the power law with plateau because they 
provide variance values of -11.43, -27.78, -25.17, 
respectively. 

Table 3: Parameters for the fit of  𝑽′𝒊 

  a b c SSE 
V′𝑖 = 𝑎 ∗ 𝑖 + 𝑏  -2.031 59.65 \ 1,350 

V′𝑖 = 𝑎 ∗ 𝑖2 + 𝑏 + 𝑐    -0.03 -1.44  57.14  1,346 

V′𝑖 = 𝑎 ∗ 𝑖𝑏   86.07  -0.37  \ 1,638 

V′𝑖 = 𝑎 ∗ 𝑖𝑏 + 𝑐    -0.73 1.32 55.39  1,341 

V′𝑖 = 𝑎 ∗ 𝑒𝑖∗𝑏 + 𝑐  64.07  -0.05 \ 1,387 

As with the other two fitting curves, i.e power law and 
negative exponential, the best in terms of SSE is the 
negative exponential. However, since it provides a 
forecasted variance for the group with 35 operators 
equal to 10.56, we choose the power law curve, which 
leads to a forecasted variance of 23.08 for the group 
composed by 35 operators. This choice is in line with 
a conservative approach that favours a forecasted 
variance that is more in line with the observed ones 
(note that a variance of 10,56 is about 50% less than 
the minimum observed value 23,0). After this stage, we 
proceed with the re-design of the current warehouse, 
whose layout and basic module are reported in Figure 
3. This stage is not included in the framework since it 
heavily depends on the current warehouse 
characteristics, however it can be used by practicing in 
similar system. With respect to Figure 3: the warehouse 
includes 5.962 m2 overall, out of which 2.446 m2 are 
dedicated to the storage of shoes (#1), 300 m2 are 
devoted to the storage of apparel (#2), 1600 m2 are 
employed as a buffer (inbound and outbound) (#3), 
619 m2 are used as a count area (#4), 175 m2 as a 
quality control area (#5), and the remaining 822 m2 as 
a packaging area (#6).  

 

 

 

 

 

 

 

Figure 3: Warehouse layout as-is and base module. 

The base module, which is used as shelving, is 2.78 
meter wide and 1 meter deep. This module is organised 
in eight levels, where the first three are employed for 
the picking and the other five are used as stock. This 
management requires a specific procedure of goods 
lowering – from the stock level to the picking level- 
when the quantity of picking goods is not sufficient for 
the fulfilment of the picking orders. The 95% of the 
items (shoes) is managed through packages, which are 
contained in master boxes positioned on pallets. The 
average dimension of a master box is 546 mm x 620 
mm x 327 mm. The capacity of a single module 
corresponds on average to 2,554 items (i.e., pair of 
shoes), after  having reduced its own capacity by  the 
5% to be conservative. From the above mentioned 
data, it is possible to obtain the capacity of each single 
aisle as well as the overall capacity of the warehouse, 
corresponding to 630,739 items. This layout has been 
reconsidered and revaluated on the basis of the 
customer’s growing projections/predictions. In 
particular, the customer foresees for the year 2025 an 
increase of the maximum storage capacity in the 
amount of 141%, compared to the current quantities. 
Considering the capacity of modules and aisles, it is 
calculated with regards to year 2025 an increase of 
109,158 items of warehouse capacity, i.e. 43 new 



XXVI Summer School “Francesco Turco” – Industrial Systems Engineering 

modules. Given the current layout, these new modules 
can be added to the already existing aisles, which will 
become deeper. As a conclusion, despite the maximum 
storage is subjected to a growth of the 141% during 
five years (from a maximum storage of 306,246 items 
to 739,897 items), the related space increase (i.e., shoes 
storage area) is not proportional. In particular, the area 
(#1) increases only by 16.27% (from 2,446 to 2,844 
m2). On the contrary, the area (#2), which is related to 
apparel that are not the focus of this work, make use 
of the area not yet occupied, since that the floor area 
remains unchanged as shown in Figure 4. 

 

In conclusion, it can be stated that the current 
warehouse area is oversized compared to the currently 
managed quantities and requires a relatively small 
expansion compared to the forecasted growth. 

We now apply our procedure to the aforementioned 
nine scenarios. 

Table 4: Values for 𝒇𝒌,  𝒍𝒌, 𝒖𝒌, 𝒎𝒌, 𝒎′
𝒌 

𝑓𝑘  𝑙𝑘 𝑢𝑘 𝑚𝑘 𝑚′
𝑘(+30%) 𝑚′

𝑘(+40%) 𝑚′
𝑘(+50%) 

18% 1,756 3,192 2,474 3,216 3,463 3,711 

9% 3,192 4,628 3,910 5,083 5,474 5,865 

18% 4,628 6,064 5,346 6,949 7,484 8,019 

12% 6,064 7,500 6,782 8,817 9,495 10,173 

15% 7,500 8,936 8,218 10,684 11,506 12,328 

2% 8,936 10,372 9,654 12,551 13,517 14,482 

2% 10,372 11,808 11,090 14,418 15,527 16,636 

9% 11,808 13,244 12,526 16,285 17,538 18,790 

9% 13,244 14,680 13,962 18,152 19,548 20,944 

6% 14,680 16,116 15,398 20,019 21,559 23,099 

In Table 4 we report the values of the ranges in which 
we subdivide the picked quantities as well as their 
bounds and frequencies. We also report the new mean 
values per class (𝑚′

𝑘) obtained by increasing the 
original mean of 30-40-50%. These values, combined 
with the original mean individual productivity per 
number of operators per group and with the 
forecasted ones, are the inputs for proposed 
procedure, which leads to the results listed in Table 6 
for each scenario. In Table 5 we report the manpower 
costs and the assumption about the working hours per 
day and the working days per week to get the results 
reported in Table 6. 

Table 5: Hourly manpower costs and working days. 

Hourly ordinary manpower cost [€/ℎ ] 30 

Hourly overtime manpower cost [€/ℎ ] 39 

Working weeks in a year [𝑤𝑒𝑒𝑘𝑠/𝑦𝑒𝑎𝑟 ] 52 

Working days in a week [𝑑𝑎𝑦𝑠/𝑤𝑒𝑒𝑘] 5 

Hours per day per operator [ℎ/𝑑𝑎𝑦𝑠] 8 

 

As already stated, we assume that eight hours per day per 
operator are allowed and that there are five working days in 

a week since these are the actual working conditions. For 
the manpower cost we take as reference the actual hourly 
cost for ordinary operators and increase it by 30% for 
overtime operators. 

Table 6: Results of the case study  

  𝐸𝑝 𝐸𝑠 Total annual cost [€/𝑦𝑒𝑎𝑟 ] 

𝑚′
𝑘(+30%) 𝑎𝑛𝑑  𝑂𝑚𝑎𝑥 = 25 15 2 1,098,240 

𝑚′
𝑘(+30%) 𝑎𝑛𝑑  𝑂𝑚𝑎𝑥 = 30 16 1 1,079,520 

𝑚′
𝑘(+30%) 𝑎𝑛𝑑  𝑂𝑚𝑎𝑥 = 35 17 1 1,141,920 

𝑚′
𝑘(+40%) 𝑎𝑛𝑑  𝑂𝑚𝑎𝑥 = 25 17 3 1,304,160 

𝑚′
𝑘(+40%) 𝑎𝑛𝑑  𝑂𝑚𝑎𝑥 = 30 18 2 1,285,440 

𝑚′
𝑘(+40%) 𝑎𝑛𝑑  𝑂𝑚𝑎𝑥 = 35 19 1 1,266,720 

𝑚′
𝑘(+50%) 𝑎𝑛𝑑  𝑂𝑚𝑎𝑥 = 25 17 4 1,385,280 

𝑚′
𝑘(+50%) 𝑎𝑛𝑑  𝑂𝑚𝑎𝑥 = 30 18 2 1,285,440 

𝑚′
𝑘(+50%) 𝑎𝑛𝑑  𝑂𝑚𝑎𝑥 = 35 19 1 1,266,720 

 

As can be seen in Table 6, with a forecasted growth of the 
picked quantities of the 30%, the minimum annual cost is 
given in the scenario with the maximum number of 
operators equal to 30. Specifically, the number of expected 
ordinary operators in this optimal scenario is 16 with only 
one expected overtime worker. On the other side, for the 
forecasted growth of picked quantities both of 40% and 
50%, the optimal scenario provides a maximum number of 
operators of 35 with an expected number of ordinary 
operators of 19. Also, in these cases only one overtime 
worker is expected. This is an interesting result that 
highlights how the number of operators chosen for the 
growth scenario of 40% is not fully exploited, and therefore 
this workforce can sustain an additional work of about 
10%. This result allows to forecast that we can measure the 
workforce as in the 40% growth scenario because the 
operators will be able to deliver also additional works 
without requiring further workforce investments. 

4. Conclusions 

In this paper we have presented a scientific approach 
for the workforce resizing. Specifically, we have 
proposed a procedure that, thanks to its underlying 
simplicity, can be easily used by practitioners. The 
application of the proposed framework to a real case 
study allowed to achieve interesting findings. The 
mean individual productivity per group number was 
fitted very well by a power law with plateau confirming 
the freeride behaviour in these groups. In addition, the 
final output of the framework clearly showed how the 
same workforce used for a growth of the picked 
quantities of 40% can be used also in the case of a 
growth of 50% because in the first scenario the 
resources are not fully exploited. These findings are 
useful both from a tactical and from an operational 
viewpoint. Further works in this direction can include 
a simulation of such a system in order to include a 
division of picked quantities through the day and a 
subsequent differentiation of the service level based on 
the orders’ priorities. Other extensions of this work 
can investigate the impact of introducing competitivity 
between groups to avoid the free ride behaviour. 

5. References 

Albanese, R. and Van Fleet, D. D. (1985) ‘ Rational 
Behavior in Groups: The Free-Riding Tendency  ’, 
Academy of Management Review, 10(2), pp. 244–255. doi: 

Figure 4: Warehouse layout to-be. 



XXVI Summer School “Francesco Turco” – Industrial Systems Engineering 

10.5465/amr.1985.4278118. 

Anthony, R. N. (1965) Planning and Control Systems: A 
Framework for Analysis. Edited by H. U. Boston, Division 
of Research, Graduate School of Business Administration. 

Bartholdi, J. and Hankman, S. (2016) ‘Warehouse and 
distribution science’, The Supply Chain & Logistics Institute, 
pp. 1–323. 

Chen, Y. Y. (2020) ‘Intergroup competition with an 
endogenously determined prize level’, Journal of Economic 
Behavior and Organization, 178, pp. 759–776. doi: 
10.1016/j.jebo.2020.07.034. 

Erev, I., Bornstein, G. and Galili, R. (1993) ‘Constructive 
intergroup competition as a solution to the free rider 
problem: A field experiment’, Journal of Experimental Social 
Psychology, 29(6), pp. 463–478. doi: 

Davarzani, H. and Norrman, A. (2015) ‘Toward a relevant 
agenda for warehousing research: literature review and 
practitioners’ input’, Logistics Research, 8(1). doi: 
10.1007/s12159-014-0120-1. 

Ghiani, G., Laporte, G. and Musmanno, R. (2004) 
Introduction to Logistics Systems Planning and Control, Wiley 
interscience series in systems and optimization. London: John 
Wiley & Sons, Ltd (10.1111). Available at: 
http://dx.doi.org/10.1016. 

van Gils, T. et al. (2018) ‘Designing efficient order picking 
systems by combining planning problems: State-of-the-art 
classification and review’, European Journal of Operational 
Research, 267(1), pp. 1–15. doi: 10.1016/j.ejor.2017.09.002. 

Gong, Y. and De Koster, R. (2008) ‘A polling-based 
dynamic order picking system for online retailers’, IIE 
Transactions (Institute of Industrial Engineers), 40(11), pp. 
1070–1082. doi: 10.1080/07408170802167670. 

Gong, Y. and de Koster, R. B. M. (2011) ‘A review on 
stochastic models and analysis of warehouse operations’, 
Logistics Research, 3(4), pp. 191–205. doi: 10.1007/s12159-
011-0057-6. 

Gu, J., Goetschalckx, M. and McGinnis, L. F. (2010) 
‘Research on warehouse design and performance 
evaluation: A comprehensive review’, European Journal of 
Operational Research, 203(3), pp. 539–549. doi: 
10.1016/j.ejor.2009.07.031. 

Gue, K. R. and Meller, R. D. (2009) ‘Aisle 
configurationsfor unit-load warehouses’, IIE Transactions 
(Institute of Industrial Engineers), 41(3), pp. 171–182. doi: 
10.1080/07408170802112726. 

de Koster, R., Le-Duc, T. and Roodbergen, K. J. (2007) 
‘Design and control of warehouse order picking: A 
literature review’, European Journal of Operational Research, 
182(2), pp. 481–501. doi: 10.1016/j.ejor.2006.07.009. 

Marchet, G., Melacini, M. and Perotti, S. (2015) 
‘Investigating order picking system adoption: a case-study-
based approach’, International Journal of Logistics Research and 
Applications, 18(1), pp. 82–98. doi: 
10.1080/13675567.2014.945400. 

Marcoulaki, E. C., Broulias, G. P. and Chondrocoukis, G. 
P. (2005) ‘Optimizing warehouse arrangement using order 
picking data and Monte Carlo simulation’, Journal of 
Interdisciplinary Mathematics, 8(2), pp. 253–263. doi: 
10.1080/09720502.2005.10700406. 

Mooney, C. Z. (1997) Monte Carlo Simulation. Edited by 
SAGE-Publications. Chicago, USA. 

One-way analysis of variance - MATLAB anova1 - MathWorks 
Italia (no date). Available at: 
https://it.mathworks.com/help/stats/anova1.html 
(Accessed: 19 February 2021). 

Pohl, L. M., Meller, R. D. and Gue, K. R. (2009) 
‘Optimizing fishbone aisles for dual-command operations 
in a warehouse’, Naval Research Logistics, 56(5), pp. 389–
403. doi: 10.1002/nav.20355. 

Rouwenhorst, B. et al. (2000) ‘Warehouse design and 
control: Framework and literature review’, European Journal 
of Operational Research, 122(3), pp. 515–533. doi: 
10.1016/S0377-2217(99)00020-X. 

Schiff, D. and D’Agostino, R. B. (1996) Practical Engineering 
Statistics, Wiley. 

Shaw, R. G. and Mitchell-Olds, T. (1993) ‘Anova for 
Unbalanced Data: An Overview’, Ecology, 74(6), pp. 1638–
1645. doi: 10.2307/1939922. 

Shephard, R. W. and Färe, R. (1974) ‘The law of 
diminishing returns’, Zeitschrift für Nationalökonomie Journal 
of Economics, 34(1–2), pp. 69–90. doi: 
10.1007/BF01289147. 

Stigler, G. J. (1974) ‘Free Riders and Collective Action: An 
Appendix to Theories of Economic Regulation’, Bell 
Journal of Economics, 5(2), pp. 359–365. Available at: 
https://econpapers.repec.org/RePEc:rje:bellje:v:5:y:1974:i
:autumn:p:359-365 (Accessed: 10 February 2021). 

Tompkins, J.A, White, J.A., Bozer, Y.A., Tanchoco, J. M. 
A. (2003) Facilities Planning, Wiley. doi: 10.1201/b10726-6. 

 

 

 


