
XXV Summer School “Francesco Turco” – Industrial Systems Engineering  

Machine learning models to predict components decay in a 
naval propulsion system 

Quatrini E.*, Colabianchi S.*, Costantino F.*, Tronci M.* 

 

*Department of Mechanical and Aerospace Engineering, University of Rome “La Sapienza”, Via Eudossiana, 18, 
00184 Rome, Italy 

(elena.quatrini@uniroma1.it, silvia.colabianchi@uniroma1.it, francesco.costantino@uniroma1.it, massimo.tronci@uniroma1.it) 

Abstract: The decay of a single component in a naval propulsion system can affect the performance of the entire 
system, involving expensive maintenance costs for restoring efficient conditions. Therefore, a regular control of the 
decay of key components of these systems is essential for properly handle maintenance actions. Moreover, in naval 
propulsion systems it is necessary to consider the difficulty in implementing an onboard maintenance action or 
returning a vessel. Two relevant components in naval propulsion systems are the turbine and the compressor. This 
study develops two machine learning models to predict turbine and compressor decay, i.e. based on classification and 
regression approaches. The former classifies whether the components are decayed or not, thus highlighting a state of 
criticality, the latter predicts a specific value of each decay coefficient. For each approach, different algorithms are 
compared, e.g. boosted trees, linear regression or support vector machines. A case study considering sixteen inputs 
has been used to test the effectiveness of the proposed solution, starting from a dataset of about twelve thousand 
instances referred to a naval vessel. A sensitivity analysis of relevant parameters has been developed to verify the 
robustness of the approach. 
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1.Introduction 

Vessels are nowadays the most important means of 
transport in global trade, with more than ten billion tons of 
goods shipped (Brooks & Faust, 2018). Maintaining naval 
propulsion systems can be very expensive and can strongly 
affect the total amount of costs to sustain (Coraddu et al., 
2016). Specifically, naval propulsion systems must deal with 
both the high costs of individual components and the high 
costs of maintenance actions. One can affirm that 
maintenance costs in maritime settings may be 20% of total 
operating costs and may be even higher for an offshore 
plant (Sebastiani, Pescetto, & Ambrosio, 2013).  For all 
these reasons, maintenance of the several components of a 
naval propulsion system is an onerous activity, that must be 
efficiently programmed. The distinctive characteristic of 
naval propulsion systems is that they can require a dry dock 
to be maintained and the difficulties of bringing a boat back 
to port are not negligible (Cipollini, Oneto, Coraddu, 
Murphy, & Anguita, 2018a). Sometimes it is impracticable 
to perform maintenance actions on board and offshore. 
Modelling the behavior and the interactions of the 
components of a naval propulsion system can be very 
complicated, affecting or even making the implementation 
of proper maintenance impossible. There are many 
variables at stake and their a priori physical modelling is 
difficult. Data-driven models can help to solve this 
problem, achieving considerable results (Cipollini, Oneto, 
Coraddu, Murphy, & Anguita, 2018b). Based on all these 
considerations, this paper proposes two machine learning 
models, to predict turbine and compressor decay in a naval 

propulsion system characterized by a gas turbine 
propulsion plant. The paper suggests two different 
approaches: the former is a regression analysis, that predicts 
a specific value of each decay coefficient; the latter is a 
classification approach, that classifies whether the 
components are decayed or not, thus highlighting a state of 
criticality. The aim is to compare the approaches and 
evaluate their respective performances, to determine 
whether they are both performing, or you need to prefer 
one over the other. Besides, the case study checks for any 
significant differences between the results of the 
compressor and turbine analyses, both for the regression 
and the classification approach. A sensitivity analysis has 
been developed to assess how much the variations of 
individual inputs as well as combinations of inputs affect 
the output, to evaluate the robustness of the approach. 
Some considerations about the correlation between the 
inputs themselves have been carried out, with different 
tests for the dimensionality reduction, to decrease the 
variables redundancy. For this purpose, the technique 
applied is the Principal Component Analysis (PCA), 
comparing PCA with different levels of variability covered. 
The case study presented in this paper relies on a dataset 
available online on the UC Irvine Machine Learning 
Repository (Coraddu et al., 2016, 2015). The remainder of 
the paper is organized as follows. Section 2 presents the 
related literature. Section 3 presents the machine learning 
models applied to a case study and Section 4 explains the 
analyses carried out in the case study. The discussion of the 
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paper results, the conclusions, and future research are 
presented in Section 5.   

2.Literature review 

Naval propulsion systems are widely discussed in relation 
to condition-based maintenance. This is due to the fact that 
marine diesel engines are obliged to have high levels of 
reliability, and availability, to meet stringent in-service, and 
operating requirements (Giorgio, Guida, & Pulcini, 2007). 
Considering the naval marine sector, nowadays several ship 
programs currently use “Combined Diesel Electric and Gas 
Turbine” (CODELAG) propulsion (Hendry & Bellamy, 
2019), as in the presented case study. Particularly, the gas 
turbines have been the subject of study for many years 
(Anon, 1986; Kerpestein, 1987; Pierce & Shu, 1984). As 
presented in the introduction, this is due to the high 
maintenance costs that can account for most of the costs 
of ship machinery maintenance (Coraddu et al., 2016).  
Considering the naval propulsion systems, they are made 
up of very expensive equipment (Coraddu et al., 2016), 
such as gas turbines or cooler, compressor and fuel 
injection system (Altosole et al., 2014; Basurko & Uriondo, 
2015). Modelling a naval propulsion system can be very 
complicated and in such complex systems the application 
of data-driven models facilitates the maintenance 
implementation (Cipollini et al., 2018b; Györfi, Kohler, 
Krzyzak, & Walk, 2002). It is, therefore, necessary to 
consider the difficulty of having a labelled dataset (Altosole 
et al., 2014), since it can be very difficult to retrieve data 
from fault situations (Tan, Niu, Tian, Hou, & Zhang, 2019). 
Two of the main components of a naval propulsion system, 
specifically in a gas turbine (GT) propulsion plant, are the 
GT compressor and the GT turbine (Cipollini et al., 
2018b). Their appropriate maintenance becomes essential 
not only for the proper functioning of the system but also 
for the containment of emissions (Lorencin, Anđelić, 
Mrzljak, & Car, 2019). In fact, the fouling of the GT 
compressor increases the specific fuel consumption and the 
temperature of the exhaust gas (Tarabrin, Schurovsky, 
Bodrov, & Stalder, 1998). Consequently, the effects of 
fouling also affect the efficiency of the GT, which can be 
represented with a reduction of the GT flow rate, explained 
by kMt (Altosole et al., 2014; Coraddu et al., 2016). The 
analysis of the pollution emissions can even help to 
implement a structured prognosis for the gas turbines 
(Kacprzynski et al., 2001). The dataset used in this paper 
has been used for testing the applicability of some well-
known regression algorithms such as regularized kernel 
least squares and support vector regression (Coraddu et al., 
2016, 2015) as well as with neural networks (Cisotto & 
Herzallah, 2019; Lorencin et al., 2019). Based on the 
analyzed literature, the authors present two machine 
learning models for predicting turbine and compressor 
decay in a GT propulsion plant. The paper also suggests 
considerations on the dimensionality reduction and the 
influence of individual variables as well as their variability 
on the model. 

3.Machine learning models application to a case study  

The machine learning models developed to study the 
turbine and compressor decay are shown by a case study 
application. The dataset used in this case study (Coraddu et 

al., 2016, 2015) has been generated with a numerical 
simulator of a naval vessel characterized by a GT 
propulsion system. The complete simulator is constituted 
by 5 blocks, i.e. propeller, hull, GT, gearbox, and controller. 
The considered outputs of this dataset are 2: 

• kMc = GT Compressor decay state coefficient  

• kMt =GT Turbine decay state coefficient  
Specifically, kMc describes the reduction of the values of 
the airflow rate Mc. This value is indicative of the 
compressor status. Similarly, kMt describes the gas flow 
rate reduction factor on duty, providing the turbine state. 
The kMc has been investigated in the domain [1; 0.95], and 
the kMt in the domain [1; 0.975]. Ship speed has been 
investigated sampling the range of feasible speed from 3 
knots to 27 knots with a sampling distance of 3 knots. As 
asserted in the abstract and the introduction, the authors 
have decided to analyse and predict the decay state of the 
turbine and the compressor with two approaches, i.e. a 
regression approach and a classification approach.  The 
former predicts the punctual values of kMc and kMt. The 
latter only classifies whether the components are decayed 
or not. For the classification approach, the authors have 
followed what suggested in (Cipollini et al., 2018a): 

• kMc: [0.95−0.98) decayed; [0.98−1] not decayed 

• kMt: [0.975−0.99) decayed; [0.99−1] not decayed 
Those thresholds are founded on the assumption that an 
effective time service of 2000 h per year is a reasonable 
operating time for these vessel types. Based on these 
thresholds, the authors have created a different dataset 
where the punctual values of kMc and kMt are replaced 
with “1” if they represent a decay state and “0” if they do 
not represent a decay state. So, at the end of these steps, 
there are two different datasets: the one with the specific 
value of kMc and kMt that is used for the regression analysis 
and the one with the sole representation of a state of decay 
or otherwise of the compressor and turbine, used for the 
classification approach. The inputs dataset is composed by 
16 variables: 

• 𝑥1 = Lever position (lp) [ ] 

• 𝑥2 = Ship speed (v) [knots] 

• 𝑥3 = Gas Turbine (GT) shaft torque (GTT) [kN 
m] 

• 𝑥4 = GT rate of revolutions (GTn) [rpm] 

• 𝑥5 = Gas Generator rate of revolutions (GGn) 
[rpm] 

• 𝑥6 = Starboard Propeller Torque (Ts) [kN] 

• 𝑥7 = Port Propeller Torque (Tp) [kN] 

• 𝑥8 = Hight Pressure (HP) Turbine exit 
temperature (T48) [C] 

• 𝑥9 = GT Compressor inlet air temperature (T1) 
[C] 

• 𝑥10 = GT Compressor outlet air temperature 
(T2) [C] 

• 𝑥11 = HP Turbine exit pressure (P48) [bar] 

• 𝑥12 = GT Compressor inlet air pressure (P1) 
[bar] 

• 𝑥14 = GT exhaust gas pressure (Pexh) [bar] 

• 𝑥15 = Turbine Injecton Control (TIC) [%] 

• 𝑥16 = Fuel flow (mf) [kg/s] 
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4.Sensitivity analysis and correlation analysis 

 

Figure 1: Data overall distribution

In this section, the use of the expression "step" has the 
function of representing the path taken by the authors to 
structure the models presented in the paper. It is, therefore, 
a way of representing and highlighting the sequence of 
actions carried out and their order of execution. The first 
step to apply is to verify the presence of variables that do 
not vary over time, to eliminate them from the analysis. 
Figure 1 presents the overall distribution of the data. In 
Figure 1, each line in the plot represents a complete 
instance, and each coordinate variable in the plot 
corresponds to a variable in the dataset. Two variables 

always assume the same value, which are 𝑥9 and 𝑥12. 
Neglecting these variables, the result is a dataset with 14 
variables. The second step is the application of a sensitivity 
analysis. The latter explains how the variations of an input 
data affect the outputs. A model can be sensitive to a 
parameter in two main modes: the variability, or 
uncertainty, associated with one parameter propagates 
throughout the whole of the model, making a strong 
contribution to the variability of model outputs; model 
results can be highly correlated with a parameter of input 
so that small changes in input cause significant changes in 
the output. Specifically, feature values have been randomly 
shuffled, one column at a time and then testing the 
different possible combinations of the inputs. The 
performance of the model is measured before and after, 

and the output of this analysis is an index, 𝑠𝑖,𝑗 , representing 

the sensitivity coefficient of the variable i on the output j. 
The authors have implemented 4 different sensitivity 
analyses, one for every possible output. For the 

compressor, 𝑥2 and 𝑥7 have an 𝑠𝑖,𝑗 = 0, thus allowing them 

to be removed from the ranking of the variables. 𝑥2 and 𝑥7 

have an 𝑠𝑖,𝑗 = 0 even for the turbine, enabling to neglect 

them for the following analyses. Moreover, 𝑥2 is a linear 

function of  𝑥1.  Considering both variables, regardless of 

the 𝑠𝑖,𝑗 obtained, would have provided redundant 

information. The third step for the development of the 

machine learning models was the analysis of the 
correlations between the selected inputs. This step permits 
to verify the presence of redundant variables that can weigh 
down the model. This analysis shows a strong correlation 
between the variables, always and for all of them higher 
than 0.89. An analysis of the significance of the p-values 
obtained confirms the rejection of the null hypothesis. 
Based on these observations, the authors decided to apply 
the PCA for reducing both the redundancy and the 
dimensionality of the variables. With PCA it is possible to 
apply an orthogonal transformation to convert a set of 
correlated variables into a set of values of linearly 
uncorrelated variables.  

4.1 PCA and predictive models 

Analyzing the dataset with the PCA, it is possible to do 
some interesting considerations on the data about the 
variations of the PCA according to the covered variability 
of the dataset. Specifically, with just one PCA component 
it is possible to cover 97.5% of the total variability of the 
dataset. In the same way, with 2 PCA components, it is 
possible to cover 99.4% of the total variability and with 6 
PCA components, all the dataset variability can be covered. 
To summarize, the different variabilities covered by PCA 
are: 

• 1 PCA component → 97.5% of covered 
variability 

• 2 PCA components → 99.4% of covered 
variability 

• 6 PCA components → 100% of covered 
variability 

These results enable assessments to be made on the next 
steps of the prediction model. The three different 
combinations of PCA are tested both for the regression 
approach and then for the classification approach.  The aim 
is to find the best options for the machine learning models 
and in the same way, see the distinctions with the different 
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settings of the PCA.  For the classification approach, the 
tested algorithms are two ensemble methods, i.e. the 
boosted trees and the bagged trees, the logistic regression, 
and the support vector machines (SVM). For the regression 
approach, the tested algorithms are the bagged trees, the 
linear regression, the robust regression, the interactions 
regression, and the stepwise linear regression (SL 
regression). The results of the predictive models are 
presented from Table 1 to Table 4. Specifically, Table 1 and 
Table 2 show for each combination of the PCA 
components and the tested algorithms the 𝑅2, i.e. the 
coefficient of determination, which represents a proportion 
between the variability of the data and the correctness of 
the statistical model used. Table 3 and Table 4, on the other 
hand, show the accuracy of the classification models, i.e. 
the proportion between corrected predictions and total 
predictions. Table 1 and Table 2 show that both for kMt 
and kMc, the best results for the regression approach are 
obtained with the bagged trees, using the PCA with 6 
components. Table 3 and Table 4 show the classification of 
the state of decay of the turbine and the compressor 
respectively. Both obtain the best results with the bagged 
trees, with PCA with 6 components. 

 

Table 1: Results of the regression model for kMt 

 97.5% of 
variability 

99.4% of 
variability 

100% of 
variability 

Bagged 
trees 

𝑅2: 0.15 𝑅2: 0.75 𝑅2: 0.97 

Linear 
regression 

𝑅2: 0 𝑅2: 0 𝑅2: 0.28 

Robust 
regression 

𝑅2: 0 𝑅2: 0 𝑅2: 0.28 

Interactions 
regression 

𝑅2: 0 𝑅2: 0 𝑅2: 0.79 

SL 
Regression 

𝑅2: 0 𝑅2: 0 𝑅2: 0.79 

 

Table 2: Results of the regression model for kMc 

 97.5% of 
variability 

99.4% of 
variability 

100% of 
variability 

Bagged 
trees 

𝑅2: 0.58 𝑅2: 0.85 𝑅2: 0.98 

Linear 
regression 

𝑅2: 0 𝑅2: 0 𝑅2: 0.51 

Robust 
regression 

𝑅2: 0 𝑅2: 0 𝑅2: 0.51 

Interactions 
regression 

𝑅2: 0 𝑅2: 0.01 𝑅2: 0.87 

SL 
Regression 

𝑅2: 0 𝑅2: 0.01 𝑅2: 0.87 

 

Table 3: Accuracy of the classification model for the 
turbine decay 

 97.5% of 
variability 

99.4% of 
variability 

100% of 
variability 

Boosted 
decision 

trees 

 

63.8% 

 

66.4% 

 

86.7% 

Bagged 
trees 

60.7% 89.9% 97.1% 

Logistic 
regression 

57.7% 57.7% 69.1% 

SVM 53% 47.5% 69.2% 

Table 4: Accuracy of the classification model for the 

compressor decay 

 97.5% of 
variability 

99.4% of 
variability 

100% of 
variability 

Boosted 
decision 

trees 

 

81.2% 

 

86.1% 

 

95.6% 

Bagged 
trees 

77,7% 92.8% 98.5% 

Logistic 
regression 

58.8% 58.8% 78.2% 

SVM 49.5% 47.8% 68% 

 

Figure 2 and Figure 3 show the prediction trend with the 
regression approach both for kMt and kMc, obtained with 
the best settings of PCA and with the most performant 
algorithm, i.e. with the bagged trees and 6 PCA 
components. Going into detail, the black line represents 
"the perfect prediction", i.e. the situation in which 
predicted response and actual response coincide. Each 
point on the graph then highlights what is the prediction of 
the model and what is the real value of the decay coefficient 
of the component, allowing you to have a better insight into 
the performance of the models. 

 

Figure 2: Prediction trend for kMc with the regression 
approach 
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Figure 3: Prediction trend for kMt with the regression 

approach 

As can be noticed, both models manage to obtain good 
predictions for both coefficients, being able to predict very 
well the dependent variable, i.e. the decay coefficients, 
based on the independent variables, i.e. the input 
parameters. Figure 4 and Figure 5 introduce respectively the 
ROC curve for the classification of the compressor decay 
and the turbine decay. From Figure 4 to Figure 7 the 
presented results refer to the classification machine learning 
models using 6 PCA components and the bagged trees as 
algorithm. The ROC curve is created by plotting the true 
positive rate and the false positive rate at various threshold 
settings. The closer the curve is to the upper left corner, the 
better the performance of the classifier. Curves that are 
close to the diagonal result from classifiers that tend to 
make estimates based on randomness. The results obtained 
by both models are very positive, as can be seen from the 
proximity of both ROC curves to the upper left corner. 

 

 

Figure 4: Best result for the compressor decay with the 
classification approach 

 

Figure 5: Best result for the turbine decay with the 

classification approach 

Figure 6 and Figure 7 present respectively the confusion 
matrices for the compressor decay and the turbine decay, 
with the rate of correct predictions as well as of true and 
false positives and true and false negatives. The confusion 
matrices make it possible to understand the trend of 
classification errors, giving evidence of the statistical 
classification accuracy. Each column of the matrix 
represents the predicted values, while each row represents 
the real values. Both the compressor and turbine 
classification model have a very low false positive and false 
negative rate, but the latter are slightly better as far as the 
compressor is concerned. 

 

Figure 6: Confusion matrix for compressor decay 

 

Figure 7: Confusion matrix for turbine decay 
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All machine learning models have been validated with 
cross-validation. Specifically, 10 folds were used for each 
model. So, the cross-validation process starts partitioning 
the data into 10 disjoint folds. The following step is that for 
every fold, the model is trained using the out-of-fold 
observations, and then it is assessed with the in-fold data, 
calculating the selected metrics over all folds. Cross-
validation avoids overfitting and makes efficient use of all 
the data. Moreover, it can help to solve the problem of the 
asymmetric sampling of the training dataset, which may 
involve bias. The results obtained however open up the 
scenario for future research and reflections. In fact, PCA 
components 3, 4, 5, and 6 provide 0,6% of the variance, but 
the machine learning models improved a lot their 
performance.  The results obtained with the application of 
cross-validation do not show the presence of overfitting. 
This leads to suspect the presence of physical 
characteristics of the system that determine these results. 
Based on this, in future research developments, it will be 
interesting to investigate the results obtained, to determine 
in detail the characteristics that define them. 

5.Discussion and conclusions 

It is interesting to note that both the regression approach 
and the classification approach achieve the best results with 
the same algorithm and under the same conditions of PCA. 
Specifically, the previous expression refers to the fact that 
bagged trees are the algorithm that guarantees the best 
performance for the prediction of kMt and kMc and for the 
classification of the presence or absence of a decay state in 
the turbine or in the compressor and the PCA that covers 
the 100% of the variability of the data reaches the best 
results both for the regression and the classification 
approach. These results can be found in Table 1, Table 2, 
Table 3, and Table 4. Considering the same tables, it can 
still be argued that already the PCA that covers 99.4% of 
variability achieved acceptable results in both approaches, 
but the PCA that covers the 97.5% of the data variability is 
not able to guarantee appropriate outcomes. According to 
the metrics of the different machine learning models, it can 
be noted that those relating to the compressor are 
significantly better than those relating to the turbine with 
the PCA with 1 and 2 components, as can be noted in Table 
1, Table 2, Table 3 and Table 4. As shown in the same 
tables, this difference is practically zero when 6 
components are considered in the PCA. For the evaluation 
of the regression algorithms, given the small values to be 
predicted, it was considered that the only metric relevant 

for their evaluation was 𝑅2. Examining in detail the results 
obtained for kMt and kMc shown in Table 1 and Table 2, it 
is interesting to note that with the 1 and 2 components 
PCA no algorithm can guarantee a 𝑅2>0, except for bagged 
trees that however return acceptable values only 
considering at least 2 components.  Based on the same 
tables, with the 6-components PCA, bagged trees can 
obtain 𝑅2 values close to the optimal value. As regards the 
classification approach, again the 6-components PCA 
applied with bagged trees guarantees optimal results, with 
accuracy in both cases greater than 97%, as shown in Table 
3 and Table 4. For the regression approach, the results for 
kMt and kMc are substantially identical, but for the 
classification approach, one can note that for the analysis 

of the compressor the percentages of false positives and 
false negatives are lower, although the results can be 
considered basically comparable (Figure 6 and Figure 7). In 
conclusion, both the classification and regression approach 
can be applied with excellent results, also performing an 
important reduction in the considered variables.  At the end 
of the analysis carried out in this paper, some 
considerations can be deduced from the results obtained. 
Both the proposed approaches, i.e. regression and 
classification, can be successfully applied. Neither 
performative with better results than the other. As can be 
seen from the results shown in Table 1, Table 2, Table 3 
and Table 4, the classification is perfectly in line with how 
successful the fit is in explaining the variation of the data 
for the regression approach.  It is interesting to note that 
despite a small variability gap covered between models with 
6 PCA components and with 1 and 2 PCA components, 
the results between them are not comparable. The 
application of the PCA makes it possible to successfully 
reduce redundancy in the model and to lighten its 
development and implementation. Many advantages can be 
achieved by applying models of this type. Firstly, letting a 
machine work until a complete breakdown can lead to high 
stranded costs. This problem is exacerbated in contexts 
where machinery costs are extremely high, as in the context 
considered in this contribution. Secondly, through these 
types of approaches, it is possible to manage the execution 
of maintenance interventions to reduce downtime. Going 
into detail, the use of both classification and regression 
algorithms allows a dual viewpoint. Through regression 
algorithms, it is possible to have a more specific view of the 
health state of the machinery. Since regression can show 
not only a situation of decay or not, but also its level of 
intensity, through it is possible to monitor the development 
of degradation and consequently to plan maintenance 
interventions based on the working activity of the machine. 
Classification algorithms, on the other hand, since they only 
show the presence or absence of decay, can serve as a 
control for more detailed regression results. In fact, errors 
with regression algorithms could lead to erroneous 
considerations about the health of the machinery, which 
can instead be identified and corrected through the 
classification approach. The main objective therefore that 
the two proposed approaches want to pursue is based on 
their combined use. Regression allows a picture of the 
current state of the machine, but with a focus on its 
evolution over time, allowing for long-term maintenance 
management. Prediction errors in this context can, 
however, lead to erroneous considerations, which can be 
identified using classification algorithms. The latter, 
however, provide only a current view of the state of health 
of the machinery. In conclusion, these two approaches 
have a complementary role, but each one adds more value 
to the implemented condition monitoring. Future research 
will focus on the comparison on the same case study of 
PCA and other dimensionality reduction techniques, to 
find similarities and differences between them and related 
results. It would be interesting to apply the models 
developed on a real naval propulsion system dataset, to see 
how they perform in real-life situations and further validate 
their applicability. Moreover, as previously mentioned, 
future research will be directed towards the analysis of the 
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characteristics of the system that lead to the results 
obtained, i.e. why 4 PCA components together provide 
0,6% of the variance, but the machine learning models 

improved a lot. Finally, future interesting research could be 
carried out on the future forecasting of decay coefficient 
trends. This would permit the application of prognosis 
analyses on the naval propulsion system. 
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