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Abstract: The Failure Mode, Effect and Criticality Analysis (FMECA) aims at individuating how a process might fail, 
estimating the effects of such failures and the related criticalities, in order to improve the reliability of the process. 
This methodology is surely useful in terms of identification of the actions to implement for avoiding the failures, but 
it is also important to have a broader knowledge of the environment in which the analysis is performed. Indeed, 
identifying the occurrence of common factors that may characterize risky situations can represent the key for a 
further improvement of process’ reliability, allowing the operators to anticipate and avoid hazardous events. In this 
perspective, this paper proposes an approach to deepen the study of the FMECA’s results through a data mining 
technique, the Association Rule Mining. The aim of the proposed approach is defining whether hidden relationships 
among the outcomes of the FMECA methodology exist and how they can affect the normal functioning of the 
process, also proposing monitoring or corrective strategies. The research approach is also applied to a case study in 
order to clarify its deployment. 

Keywords: Association Rule Mining, FMECA, data understanding.

1.Introduction 

Production companies are nowadays required to comply 
with a growing number of norms, regulations, and 
customer expectations for what concerning aspects like 
safety and environmental protection (Becattini, Cascini, 
and Nikulin, 2015). In this perspective, plant reliability is 
the key factor to guarantee the achievement of acceptable 
levels in these aspects since it is fundamental to ensure the 
execution of process operations in a safe way (Ciarapica et 
al., 2009; Viveros et al., 2018). Hence, the adoption of 
opportune control and monitoring strategies is mandatory, 
especially in the process industry. Indeed, in this field, a 
process failure is likely to have a relevant impact not only 
on the production flow but also on the operators’ safety 
and on the surrounding environment. Several techniques 
and methodologies exist to ensure compliance with 
acceptable reliability levels: the well-known Failure modes 
and Effects Analysis or the Failure Mode, Effect, and 
Criticality Analysis is a prime example, in this sense.  

The current digital transformation enables a higher 
amount of data available in all the operations field, among 
whom the asset management one (Crespo Márquez, de la 
Fuente Carmona and Antomarioni, 2019). Hence, it is 
possible to gather and modify them in order to extract a 
growing set of information, from which deriving 
knowledge (Liew, 2007). The Knowledge Discovery in 
Databases (KDD) techniques that aim at extracting useful, 
valid, and unknown relations automatically from large 
datasets (Pitre et al., 2014) provide a valid support in 
deploying this process. In the maintenance field, KDD 
techniques are particularly useful since several variables 

have to be taken into account and analyzed 
simultaneously.  

The approach proposed in this work takes into 
consideration the need for extending the knowledge of 
existing systems and processes, focusing on the need for 
higher reliability levels in the operations field. Indeed, the 
aim of the study is to extend one of the well-known 
techniques for the reliability analysis, i.e., by deepening the 
analysis of the results through a KDD technique, i.e., the 
Association Rule Mining (ARM). Data are firstly gathered 
to complete the Failure Mode, Effect, and Criticality 
Analysis (FMECA). Then, the output dataset of the 
FMECA is furtherly analyzed to extract the relations 
among attributes and values frequently occurring together, 
supporting the definition of further actions in monitoring 
the process object of the study.  

The remainder of the work is organized as follows: the 
introduction is followed by a literature review on FMECA 
applications and KDD in the maintenance field. Then, the 
methodology is deployed (Section 3), and an example case 
coming from an offshore platform is presented (Section 
4). The conclusions are drawn in Section 5. 

 

2.Literature Review 

Data are produced by all processes of a company, i.e., 
design, production scheduling, control, and maintenance 
(Harding et al., 2006): the need for their understanding 
and interpretation enhances the interest towards 
Knowledge Discovery in Databases for development of 
intelligent techniques (Fayyad, 2001). Nowadays, several 
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processes already include the implementation of such 
techniques in the daily operations: for example, KDD 
techniques can be applied for anticipating the costs during 
the design phases of a product (Kusiak, 1999), or in 
process control to detect the anomalies and ensure the 
quality of the system (Maki and Teranishi, 2001). Other 
applications in the maintenance field involve the study of 
components’ failures contextually occurring (Antomarioni 
et al., 2019) or the definition of the critical components 
for prioritizing maintenance scheduling (Dehghanian et 
al., 2012). Realistically, the implementation of KDD 
techniques should be accompanied by the implementation 
of traditional techniques, especially in companies where 
these procedures are already in use. One of the main used 
tools to study the reliability of a system and  consequently 
to define the opportune maintenance policy is the 
FMECA (Carpitella et al., 2018). This methodology well-
fits the analysis of hierarchical systems and can be applied 
to a number of different contexts. For example, (Vernez 
and Vuille, 2009) apply it to study a railway signaling 
system, while (Bertolini, Bevilacqua, and Massini, 2006) 
use FMECA for product traceability in the food industry. 
Often, authors implement the FMECA by combining it 
with other techniques in order to overcome its 
weaknesses. For instance, Bevilacqua, Braglia, and 
Gabbrielli (2000) propose an application in combination 
with a Monte Carlo simulation, while Zammori and 
Gabbrielli (2012) integrate the analytic network process. 
The aforementioned integrations regard the improvement 
of index calculation, even though none of them is devoted 
to providing a better explanation of the results obtained in 
order to define more accurately the maintenance policy. In 
this perspective, the results of the FMECA could be 
furtherly analyzed through the Association Rule Mining in 
order to identify the existence of frequent attribute-value 
relationships (Buddhakulsomsiri et al., 2006). A similar 
approach has already been adopted in Crespo Márquez, de 
la Fuente Carmona, and Antomarioni (2019) since the 
Association Rule Mining has been applied to deepen the 
analysis of the power consumption estimated through an 
artificial neural network. However, in combination with 
an FMECA, this approach results in being novel. 

 

3.Research Approach 

This section details the approach proposed in the current 
work. In particular, starting from the data collection, the 
aim of the work is to extend the existing FMECA 
methodology through a thorough analysis of its results. A 
schematization of the methodology is provided in Figure 
1. The first step of the approach regards the collection of 
the data useful for the aim of the study. The quality of the 
data has a direct impact on the goodness of the results 
since incorrect or unreliable data collection may drive to 
inconsistent decisions. Multiple sources of data, if 
available, have to be taken into account and properly 
integrated. In this regard, when an inconsistency is noticed 
among the same data coming from different sources, a 
further search is needed to consider only the right one and 
possibly correct the error.  

 

 

Figure 1 Schematization of the research approach 

During the second step, instead, the data collected and the 
expertise of the operators and engineers involved in the 
analysis are applied to carry out the FMECA (US Military 
Standard, 1980, 1983). It is a user-friendly tool aiming at 
the identification and assessment of the potential failure 
modes of systems or processes and of the impact of such 
failures on global performance. A bottom-up approach is 
followed in developing FMECA since a break-down of a 
system is carried out in order to identify its elementary 
components and analyze them separately. In this way, the 
estimation of the failure modes, effects, and a measure of 
their criticality is provided more accurately. The output of 
the FMECA is a list of the components/sub-systems, 
their related failure modes, their effects, and a Criticality 
Analysis.  

The third step of the research approach regards the study 
of the information provided by the FMECA in order to 
define actions and follow-ups to implement for the 
improvement of the system’s reliability. According to the 
criticality measures, decisions on how to deal with critical 
failure modes and items are made upon experts’ 
evaluation. During this stage, also company policies have 
to be considered since the actions and follow-ups have to 
be implemented coherently with the other operations 
activities.   

In order to enlarge the knowledge of the system and its 
functioning in terms of failure modes, the fourth step is 
introduced in this work. In particular, the results obtained 
through the FMECA are furtherly analyzed to extract 
useful and previously unknown relations among items, 
considering both the input and the output of the FMECA: 
the aim of this step is, in fact, enlarging the existing 
knowledge of the process. Since the traditional statistics 
techniques can be obsolete when dealing with a large 
dataset consisting of several records and variables (Hand, 
1998), the KDD techniques represent a valid substitute, 
being able of simultaneously analyzing them. The 
methodology selected to pursue this aim is the 
Association Rule Mining (ARM), being an intuitive and 
easy-to-include in decision making processes (Chen et al., 
2005; Ciarapica, Bevilacqua and Antomarioni, 2019). 
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3.1 Association Rule Mining 

The ARM has been firstly applied to the extraction of 
hidden relationships from large datasets for marketing 
purposes (Agrawal, Imieliński, and Swami, 1993), but it 
has then been extended to many different fields. A formal 
definition is provided in the following: let S = {s1, 
s2,…,sn} the set of data called items and T = {t1, t2, …, tt} 
the set of all transactions; a transaction ti contains a subset 
of items (hereafter called “item-set”) taken from S. An 
implication L→R is an Association Rule (AR) if L and R 

are item-sets (L,R ⊆ S) and L∩R=∅. The item-set L is 
called body or left-hand side of the rule, while R is named 
head or right-hand side of the rule. The quality of each 
rule is determined through the calculation of some 
metrics. The most used are Support (1), Confidence (2). 

(1) Support{L ∪ R} = (#{L ∪ R})/(#{T}), where #{T} 
represents is the cardinality of the transaction set, while 

#{L ∪ R} the number of transactions containing both L 
and R. The support indicates the probability of having 
both L and R within the same transaction set. Hence, it 
can be considered as a measure of the rule’s statistical 
significance. 

(2) Confidence{L → R} = (Support {L ∪ R})/(Support 

{L→true}). The confidence indicates the conditional 
probability of having the item-set R in a transaction, and 
given the fact that it already contains L. Hence, it 
represents the strength of the rule.  

The algorithm applied in this paper for mining the ARs is 
the FP-Growth (Xiao et al., 2016) since it was shown to be 
more efficient than other ones (e.g., Apriori or Eclat). The 
ARM is performed in two-step:  

(a) the user sets a minimum support threshold: only the 
item-sets appearing in the dataset more than the specified 
support are taken into account. The other ones are 
excluded since they are not considered statistically 
significant.  

(b) ) the user sets a minimum confidence threshold: the 
FP-Growth algorithm is applied to generate the ARs 
starting from the selected item-sets; only the rules having 
confidence higher than the minimum confidence 
threshold are considered.  

From the ARs generated, the decision-makers can confirm 
or modify the policy designed during the third step in 
order to increase the reliability of the plant through more 
timely interventions. Moreover, the ARM provides more 
data useful for further future analysis. 

4.Case study 

The process analyzed in the case study aims at producing 
gaseous and condensed hydrocarbons from the offshore 
reservoir and making them available on land. The 
reservoir consists of eight wellheads, six of which produce 
gas. The remaining ones produce both oil and the 
associated gas, which are initially separated offshore and 
then pumped and compressed. Then the gas flow is sent 
together with the oil to a multi-phase marine line 
(approximately 40 km long) connecting the platform with 
the onshore plant; there, it is immediately delivered to a 

Slug Catcher for liquid-gas separation and, then, mixed 
with the gas coming out of the gas-flash compression unit. 
After this mixing, a Gas Pre-Heater heats the gas flow 
through heat exchange with stable condensate flow 
coming out from the bottom of the Stabilizer Column. If 
this heat recovery is not sufficient (or if the Gas Pre-
Heater is not available for any reason), a Gas Heater 
allows the total by-pass of the Gas Pre-Heater. The 
purpose of gas heating is to respect the delivery 
temperature at the power station inlet: in fact, gas, which 
is the main process fluid, after passing through the Gas 
Metering Station, becomes the power supply for an 
onshore power generation plant located onshore, which 
will be fed in sufficient quantity to reach its full 
production, while liquid hydrocarbons will be vaporized 
through dedicated facilities and delivered to the 
condensate recovery tank and then to the export terminal. 
The entire plant, offshore and onshore, therefore consists 
of: 

- one platform and eight wellheads, six for oil production 
and two for oil and gas; 

- a multi-phase marine transport line to the onshore plant; 

- an onshore gas processing plant; 

- a pipeline for liquid hydrocarbons, which exports them 
to the oil export terminal. 

4.1Data collection 

The application of the proposed procedure is limited to 
the oil and gas production wellheads. The data collected 
before the actual starting of the FMECA are the ones 
necessary to the expert for the discussion in identifying 
the failure modes. Hence, a series of records on 
machinery – and related components - past failures and 
operating conditions is taken into account for supporting 
the discussion. With reference to past failures data, two 
data sources have been scanned: indeed, checking the 
records reported on the information systems, some 
missing data were noticed, and, to ensure a reliable 
dataset, the on-field reports completed by the operators 
during the inspections are used.  

4.2FMECA and Actions & Follow-ups definition 

This study allows to quantify how much each failure mode 
is impacting on the performance of the system. Each 
equipment is analysed by understanding its functions; for 
each function, the potential failure modes are considered 
together with the potential effects possibly resulting from 
them. The attribution of a scaling to rank the equipment 
and the related failure modes involves the calculation of 
the failure probability and the severity of the effects.  

The criticality analysis aims at classifying the defined items 
in accordance with the impact of their failure modes on 
safety, environmental protection, and plant production 
separately, also evaluating the related frequency of 
occurrence. A semi-quantitative screening is performed 
based on a Risk Matrix, used for defining the critical items 
versus acceptance criteria. Indeed, the frequency of 
occurrence is determined quantitatively, while the effects 
are estimated qualitatively.  
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In this work, three criticality indexes are calculated as a 
combination of Severity values assigned during failure 
modes identification, Failure rates, reduction of system 
capacity (loss of production). A criticality assessment, for 
each failure mode, is performed in qualitative terms 
allowing a priority screening of the failures according to 
their impact on safety, asset/production/capacity, and 
environmental protection. 

As stated above, the evaluation of the criticality pertaining 
to an item is based on the calculation of the three 
criticality indexes detailed below: 

• Safety-related criticality index, ICS; 

• Asset and production-related criticality index, 
ICA; 

• Environmental-related criticality index, ICE. 

The severity of failures’ effect is, instead, determined 
recurring to the severity category table reported in Figure 
2. The severity assessment ranges from 0 to 4 and is 
related to the failure probability, basing on the annual 
frequency class (i.e., the yearly failure rate of each 
component), to define the acceptability rate of the failure 
mode. Specifically, three areas are identified:  

• Continuous improvement: the risk of the failure 
occurrence is tolerable, even though continuous 
improvements are preferable in order to increase 
the performance; 

• Risk reduction measures: risk reduction measures 
have to be implemented in order to limit the 
occurrence of faulty events or, at least, reduce 
the impact.  

• Intolerable risk: the risk of failure occurrence is 
totally inacceptable, so it is mandatory to identify 
risk-reduction solutions.  

For each failure mode, the Overall Criticality (CFM) is 
determined as the minimum of the ICS, ICA, and ICE 
(CFM = min {ICS; ICA; ICE}); for each item, instead, 
the overall Criticality Index (CI) is determined as the 
worst CFM associated with items’ failure mode (CIi = min 
{CFMi}).  

An excerpt of FMECA’s output is reported in table 1. 
Specifically, it refers to the Oil production wellhead 
analyzed in this study, and the following information is 
reported:  

1. The item to which the failure mode is referred; 

2. The failure mode and a textual description; 

3. The operating phase during which the effect 

might verify (e.g., Production/Running - 

Planned Shut Down - Emergency Shut Down - 

Start-Up); 

4. The effects on the Main Equipment level, i.e., 

the consequences of the item's failure mode on 

the operation of the machine to which it 

belongs, in terms of production, safety and 

environment (e.g., No oil flow) 

5. Loss of production, i.e., the percentage reduction 

in system capacity caused by the failure mode 

(without considering the duration of the loss at 

this stage). 

6. ICS. 

7. ICA. 

8. ICE. 

9. Detection method, i.e. description of how effects 

can be detected. 

10. CFM. 

11. CI. 

Then, upon the experts’ evaluation, the more critical 
failure modes are treated. For instance, referring to table 
1, the worst failure mode appears to be the “FTR” (Fail to 
Regulate), whose effect is uncontrolled oil pressure. In 
this case, the improvement activities undertaken by the 
company consisted of the defining specific routes for the 
valve’s pressure inspection.  

4.3Association Rule Mining application 

The fourth step of the procedure regards a further analysis 
of the FMECA’s output. The dataset containing the 
information deriving from the FMECA analysis is 
processed to extract the ARs with the aim of enlarging the 
knowledge of the system. As required by the procedure, 
the minimum support threshold is set to 0, as well as the 
minimum confidence. Indeed, in this way, none of the 
relationships is lost during the analysis. For each failure 
mode, it could be interesting to understand, which is the 
potential loss of production (Table 2). For example, the 

rule “Failure Mode = FTR→% Loss of Production = 
n.a.” has a support of 0.12 and a confidence of 0.75. The 
support value indicates that the failure mode “FTR” (Fail 
to Regulate) and a “not assessed” loss of production are 
associated in the 12% of the instances of the FMECA. 
Moreover, if the failure mode is FTR, there is no 
production loss in 75% of cases. In 15% of cases, instead, 
the loss of production corresponding to the FTR is of 
16%. In the case of the failure mode “ELP” (External 
Leakage Process), instead, several consequences can 
verify. The most likely, both in terms of support and 
confidence, is a global production loss of the 16% 
(support = 0.12, confidence = 0.65). In other cases, if the 
failure mode is ELP, the corresponding percentage of 
production loss can be of 1.43 for the gas (confidence = 
0.17) or 50 for the oil (confidence = 0.11). These events 
are rarer since their associated support are quite low, 0.03 
and 0.02 respectively.  
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Table 1 Excerpt of FMECA’s output table. 

Item  
Failure 
Mode 

Operating 
Phase 

Effects at Main 
Equipment  level 

% Loss of 
Production 

AFC ICS ICA ICE 
Detection 
Method 

CFM CI 

Flow 
Control 
Valve 

ELP Production Gas & Oil Leakage 1,43% Gas C C1 C0 C0 
Fire & Gas 
detection 
System 

3 

2 
Flow 
Control 
Valve 

ELP Production Gas & Oil Leakage 1,43% Gas C C0 C0 C0 
Fire & Gas 
detection 
System 

3 

Flow 
Control 
Valve 

FTR Production 
Uncontrolled 
pressure oil delivery 

50% Oil C C0 C2 C0 
011000-PI-
073 

2 

 

 

Figure 2 Risk Matrix for failure level identification. 

Table 2 Association Rules relating the failure modes and the percentage of production loss. 

Left-hand side Right-hand side Support Confidence 

Failure Mode = FTR % Loss of Production = n.a. 0.12 0.75 

Failure Mode = FTR % Loss of Production = 16% 0.02 0.15 

Failure Mode = ELP % Loss of Production = 16% 0.12 0.65 

Failure Mode = ELP % Loss of Production = 1.43% Gas 0.03 0.17 

Failure Mode = ELP % Loss of Production = 50% Oil 0.02 0.11 

Table 3 Association Rules relating failure modes and effects. 

Left-hand side Right-hand side Support Confidence 

Failure Mode = ELP Effects at Main Equipment level = Gas leakage 0.12 0.65 

Failure Mode = ELP Effects at Main Equipment level = Gas & Oil Leakage 0.04 0.22 

Failure Mode = ERO Effects at Main Equipment level = Wrong value indication 0.06 1.00 

Failure Mode = FTC Effects at Main Equipment level = n.a. 0.13 0.84 

Failure Mode = FTC Effects at Main Equipment level = Uncontrolled gas pressure delivery 0.02 0.16 

Failure Mode = FTO Effects at Main Equipment level = No gas flow 0.10 0.63 

Failure Mode = FTO Effects at Main Equipment level = n.a. 0.03 0.21 

Failure Mode = FTO Effects at Main Equipment level = No oil flow 0.02 0.16 

Failure Mode = FTR Effects at Main Equipment level = n.a. 0.12 0.75 

Failure Mode = FTR Effects at Main Equipment level = Uncontrolled gas pressure delivery 0.02 0.15 
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For each failure mode, it could also be interesting to 
understand, which is the potential loss of production 
(Table 2). For example, the rule “Failure Mode= FTR 

→% Loss of Production = n.a.” has a support of 0.12 and 
a confidence of 0.75. The support value indicates that the 
failure mode “FTR” (Fail to Regulate) and a “not 
assessed” loss of production are associated in the 12% of 
the instances of the FMECA. Moreover, if the failure 
mode is FTR, there is no production loss in 75% of cases. 
In 15% of cases, instead, the loss of production 
corresponding to the FTR is 16%. In the case of the 
failure mode “ELP” (External Leakage Process), instead, 
several consequences can verify. The most likely, both in 
terms of support and confidence, is a global production 
loss of 16% (support = 0.12, confidence = 0.65). In other 
cases, if the failure mode is ELP, the corresponding 
percentage of production loss can be of 1.43 for the gas 
(confidence = 0.17) or 50 for the oil (confidence = 0.11). 
These events are rarer since their associated supports are 
quite low, 0.03, and 0.02, respectively.  

Another interesting investigation involves the rules 
associating the failure modes to the effects. Some 
examples are reported in Table 3. Depending on the 
failure mode, the effects are different, even though for 
some of them there are common effects: for example, if 
the failure mode is FTC (Fail to Close on demand), then 
the effects can be “not assessed” (confidence = 0.84) or 
“Uncontrolled gas pressure delivery”, with a confidence of 
0.15. Similarly, when the failure mode is FTR (fail to 
regulate), the same effects are foreseen, respectively, with 
a confidence of 0.75 and 0.15. In this case, a unique 
inspective policy can be planned for both the failure 
modes since the effects are the same and with similar 
conditional probabilities.    

5. Conclusions 

In this work, a research approach for deepening the 
results’ analysis of the FMECA is proposed, by defining a 
procedure based on the application of the Association 
Rule Mining. This technique, indeed, represents a simple 
but powerful method to deal with large datasets and 
extract useful attribute-value relationships from them. 
Being conscious of the common effects verifying when 
different failure modes occur or of the entity of the 
production losses can provide a support in defining a 
more accurate maintenance policy and, possibly, avoiding 
the occurrence of more dangerous events. 

Since we are living in the digital transformation era, it is 
also important to include in the standard procedures even 
techniques like those belonging to the Knowledge 
Discovery in Databases field. In this way, there is 
contamination among different environments, namely the 
pure information system area and the operations-related 
one. Together with the benefits brought for the 
operations field, some major opportunities are also 
offered in a managerial perspective: firstly, the 
understanding of the importance of conscious data 
collection since data quality is vital to extract meaningful 
results from the data analysis. Secondly, a deeper 
knowledge of the system related not only to the plant 

itself but also considering the hidden relationships 
highlighted by the data.     

However, the proposed approach represents a preliminary 
technique for enlarging the analysis carried out through an 
FMECA. Applying it to different case studies may 
highlight other benefits as well as limitations of the 
approach. Further development of the study can involve 
the use of multi-criteria decision making approaches and 
network analysis for representing the inter-relations 
identified and provide the visual user support.  
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