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Abstract: The shift from Industry 4.0 to Industry 5.0 represents a significant change in how technologies are 

approached in workplace design. Industry 4.0 was characterized by the automation of the production process, with 

a focus on maximizing output and efficiency. However, as Industry 5.0 becomes more relevant,  the focus is 

moving toward the importance of putting people at the center of the production process. This means designing 

workspaces that prioritize human comfort and productivity and finding ways to integrate technology that supports 

and enhances human abilities. One of the key technologies that is helping to facilitate this transition is collaborative 

robots or cobots. By working alongside humans, cobots can help improve production efficiency while allowing 

for greater human involvement in the production process. However, to fully leverage the potential of cobots, it is 

essential to design workspaces that are optimized for human comfort and productivity. This requires taking into 

account the needs and preferences of both human and robotic resources and finding ways to allocate tasks in a way 

that maximizes efficiency while also taking into account human well-being. One promising approach to achieving 

this goal is the implementation of a dynamic multi-objective task allocation system, as presented in this work. This 

method uses physiological and performance data to evaluate the well-being of human operators and dynamically 

re-allocate tasks to ensure that operators are not overworked or fatigued. This is a significant step towards creating 

truly human-centered production environments that prioritize the well-being and productivity of human workers. 

 

Keywords: Cobot, Human Factors, Modern Production Systems, Productivity, Industry 5.0. 

 

I. INTRODUCTION 

In the last decade, collaborative robots, or cobots, 

have experienced significant growth in adoption 

due to their unique advantages [1]. Cobots offer a 

combination of productivity and flexibility, making 

them ideal for assembly systems [2]. Unlike 

traditional robots that are specialized for a specific 

product variant, cobots can easily adjust to new 

designs or production volume changes [3]. They can 

also work directly with human operators without the 

need for safety fences, improving production while 

avoiding the need for additional safety measures.  

The shift towards a human-centered design in the 

workspace, known as Industry 5.0, prioritizes the 

wellness of operators [4]. To achieve this, various 

human factors such as ergonomics, mental 

workload, skills, and capabilities need to be 

considered in the design of the work cell [5,6]. The 

integration of cobots and human operators can 

affect performance and highlights the importance of 

taking human factors into account [7].  

To link productivity, flexibility, and human factors, 

a multi-objective task allocation strategy for 

collaborative assembly systems can be developed. 

This approach considers the different characteristics 

of resources and optimizes for multiple objectives. 

Assigning tasks to resources effectively and 

efficiently is essential to maximize productivity and 

minimize idle time in collaborative systems. A well-

designed task allocation strategy can create a 

harmonious work environment where human and 

robotic resources can work together seamlessly, 

increasing overall system performance [8]. 
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This task allocation can include as objectives to 

optimize the makespan for productivity and the 

operator's energy expenditure for human factors. 

The task allocation is typically developed offline 

and given to resources as input, allowing for the 

optimal global solution, but may be time-

consuming, and this can be seen as against the 

Industry 5.0 idea of flexibility [9]. Flexibility is 

especially important regarding the focus on the 

operators' needs in Industry 5.0 since these are not 

static and can change throughout the day or with 

different operators. Therefore, flexibility is critical 

when designing a collaborative workspace to ensure 

effective collaboration [10]. A dynamic task 

allocation system that can adjust in real-time is 

necessary to achieve this level of collaboration. This 

system combines traditional static allocation with 

the digitalization of the human operator, allowing 

for real-time consideration of human variability 

[11,12]. 

For this purpose, in this paper, a solution for a 

dynamic multi-objective task allocation is 

presented, considering the makespan for 

productivity, and the operator’s energy expenditure 

as a wellness metric. 

The paper is organized as follows: Section II 

presents an accurate analysis of the state of the art, 

followed by Section III in which the multi-objective 

model is explained. Section IV proposed the real-

time control, and Section V draws the conclusions. 

 

II. LITERATURE REVIEW 

The scheduling problem has become increasingly 

important in collaborative systems that involve both 

cobots and human operators, leading to a greater 

focus on task allocation. Dynamic task allocation is 

particularly critical in collaborative systems, where 

resources are assigned tasks based on their current 

capabilities, resources, and objectives. The primary 

goals of dynamic task allocation are to optimize 

system performance, minimize delays, and ensure 

that all tasks are completed successfully, while also 

considering the operator’s needs.  

Various approaches have been suggested, including 

a recent study [13] that introduced a novel algorithm 

for Disassembly Sequence Planning (DSP) within 

collaborative cells. The algorithm aimed to 

minimize the overall time required for completing 

tasks while ensuring safety requirements were met, 

resulting in multi-objective optimization. The study 

accounted for a flexible sequence and the potential 

for both human operators and cobots to collaborate 

on one or more tasks. Another similar solution was 

presented by [14], which included unpredictable 

events in the optimization model and considered 

cobot re-planning capability to minimize different 

cost functions. Unpredictability was also analyzed 

by [15], who proposed a planning method capable 

of capturing the behaviors of autonomous agents.  

[16] proposed a flexible collaborative 

manufacturing system with re-planning capability 

through a two-level breakdown for each job, while 

[17] introduced a centralized algorithm to address 

complex temporal and spatial constraints for real-

world problems. This solution was able to reach 

optimal solutions for larger problems than those 

previously reported in the state of the art. 

A task planner proposed by [18] considered 

ergonomic, quality, and productivity criteria for 

resource assignment and cell layout in the planning 

stage. Despite these works, none of them introduced 

the ability to dynamically reprogram tasks assigned 

to resources online in real-time. This is a crucial 

aspect for effective and efficient task allocation in 

collaborative systems.  

One of the first attempts to address this problem was 

done by [19], who developed a genetic algorithm 

capable of real-time subtask allocation to meet cost-

effectiveness requirements. Another similar 

solution was proposed by [20], which included a 

dynamic scheduler layer that allocated tasks based 

on resource requests but lacked real-time 

monitoring of objective function values. 

In order to meet the demands of Industry 5.0, 

researchers have explored ways to incorporate 

operator well-being in collaborative cells. One 

approach, as demonstrated by [21], involved using 

a complex system with a Deep Neural Network 

(DNN) to predict operator fatigue and assign tasks 

accordingly. However, this approach was limited to 

a small number of tasks due to the need for offline 



XXVIII Summer School “Francesco Turco” – «Blue, Resilient & Sustainable Supply Chain» 

 

DNN training. Another solution proposed [22] 

involved developing an ergonomic assessment 

index and using IMUs to monitor and intervene in 

real-time if ergonomic limits were exceeded. While 

this approach provided a unique solution to the 

problem of ergonomics in human-robot 

collaboration, it was still limited to the use of 

wearable technology for monitoring and 

maintaining ergonomic standards in the workplace.  

Despite progress in developing collaborative 

systems that involve human operators and cobots, 

there is still a significant need for affordable and 

real-time strategies for allocating tasks with 

multiple objectives, such as productivity and 

operator well-being.  

While previous studies have proposed various 

approaches, the lack of real-time implementation 

and cost-effectiveness remains a challenge. 

Additionally, incorporating multiple objectives into 

the task allocation process adds complexity, making 

it difficult to find optimal solutions. This gap 

highlights the need for further research and 

development in this area, with a focus on cost-

effectiveness and real-time implementation.  

 

III. MODEL 

A. Architecture setup 

A collaborative work cell has been developed for 

dynamic task allocation, where a human operator 

and a cobot work together in the same space. It is 

essential to monitor their positions to dynamically 

assign tasks based on their locations, which is 

achieved using a markerless motion capture system. 

This system does not require the use of special 

markers or sensors, making it more convenient than 

other motion capture systems. An Intel RealSense 

D435 camera is used to measure distance, providing 

accurate depth data for identifying the position and 

movement of objects and people in 3D space. The 

OpenPose [23] library is utilized for real-time 

recognition of body joint positions, enabling fast 

and precise motion tracking.  

In order to achieve real-time performance, the 

system utilizes a DELL-ALIENWARE R11 

equipped with an Intel Core i7-10700KF CPU 

3.80GHz and 32 GB of RAM. To achieve a 

frequency rate of 30fps, the middleware Robotic 

Operating Systems (ROS) is employed. The system 

can operate in a distributed computing environment 

using ROS middleware, which is crucial for real-

time performance. ROS provides a modular and 

scalable framework for developing and deploying 

software, making integrating different motion 

capture system components easier. The high-

performance computing hardware ensures that the 

system can process data quickly and accurately, 

even when tracking multiple people and objects in 

real-time. 

B. Bi-objective optimization model 

The two objectives of the optimization model are 

here described: 

 Makespan: 

The makespan in a production system is the total 

time required to complete all necessary tasks [24]. 

This factor plays a crucial role in determining the 

system's productivity, as a lower makespan 

indicates a higher quantity of products produced or 

assembled within a specific timeframe. Makespan is 

fundamental to all scheduling problems [25], and 

minimizing it can significantly improve a 

company's competitiveness by reducing product 

delivery time. To optimize system throughput, this 

study integrates makespan as an objective function 

via the variable 𝑚𝑠. The proposed task allocation 

method aims to efficiently allocate tasks by 

minimizing the 𝑚𝑠 value, which results in a lower 

overall makespan and a higher quantity of products 

produced or assembled in a given timeframe. This 

approach enhances productivity and contributes to 

increased profitability and competitiveness in the 

market. 

Operator’s energy expenditure:  

As Industry 5.0 continues to develop, there is an 

increasing emphasis on prioritizing the well-being 

of operators in the workplace. In alignment with this 

trend, the proposed task allocation method includes 

energy consumption as the second objective 

function. The assessment of energy expenditure was 

initially introduced by [26], who presented an 

approach to assess the metabolic rate for manual 
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labour and walking movements, which 

encompassed various human aspects, such as age, 

body weight, gender, height, load weight, and more. 

Evaluating energy expenditure is critical for 

assessing ergonomic risks [27,28] since it includes 

metrics such as the duration, level, and 

repetitiveness of physical tasks that indicate the 

stress caused by physical jobs [29]. 

To gauge the energy expenditure needed to perform 

a task, this study employs the approach introduced 

by [26], which calculates the energy 𝑒𝑗𝑘  required by 

a resource 𝑘 to complete task 𝑗, with the variable 𝐸 

serving as the objective function. By considering 

energy consumption as an objective function, the 

proposed task allocation method seeks to optimize 

task allocation in a manner that minimizes the 

energy expenditure required by the operator, 

promoting their well-being and reducing the risk of 

physical stress. 

Indeed, the objective functions to minimize are: 

𝐦𝐢𝐧 𝒎𝒔 = 𝐦𝐢𝐧 (𝒎𝒂𝒙 (∑ ∑ (𝑺𝒋𝒌 + 𝑷𝒋𝒌)
𝑱
𝒋=𝟏 𝒙𝒋𝒌

𝑲
𝒌=𝟏 ))  (1) 

where 𝑆𝑗𝑘  denotes the start time of task 𝑗 carried out 

by resource 𝑘, while 𝑃𝑗𝑘 indicates the duration 

needed to finish the task 𝑗 by the same resource 𝑘; 

𝐦𝐢𝐧 𝑬 = 𝐦𝐢𝐧 (∑ 𝒆𝒋𝒌 ⋅ 𝒙𝒋𝒌
𝑱
𝒋=𝟏 )    𝒌 = 𝟏 (𝑶𝑷)              (2) 

where the operator's energy expenditure is 

determined by adding up 𝑒𝑗𝑘, which represents the 

energy needed to complete each assigned task 𝑗. 

The assignment results in a binary variable defining 

what tasks are given to each resource: 

𝒙𝒋𝒌 =

{
𝟏 𝒊𝒇 𝒕𝒉𝒆 𝒕𝒂𝒔𝒌 𝒋 𝒊𝒔 𝒑𝒆𝒓𝒇𝒐𝒓𝒎𝒆𝒅 𝒃𝒚 𝒕𝒉𝒆 𝒓𝒆𝒔𝒐𝒖𝒓𝒄𝒆 𝒌

𝟎 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
(3) 

The model is subjected to the following constraints:  

∑ ∑ 𝒙𝒋𝒌
𝑲
𝒌=𝟏

𝑻
𝒕=𝟎 = 𝟏  ∀𝒋           (4) 

𝒙𝒋𝒌 ∈ {𝟎, 𝟏}  ∀𝒋, 𝒌      (5) 

∑ ≥ 𝟏   ∀𝒌
𝑱
𝒋=𝟏                    (6) 

𝒙𝒋𝒌 = 𝟎   ∀𝒋 ∈ 𝑼𝒌                  (7) 

Where Eq. 4 and Eq. 5 represent the occurrence and 

integrality constraints, while Eq. 6 ensures that 

every resource is assigned to at least one task. 

Lastly, Eq. 7 establishes the technological 

constraints, which dictate that each resource k is 

only capable of performing tasks not included in the 

set of unfeasible tasks 𝑈𝑘.  

The model resolution produces a set of optimal 

solutions represented by the Pareto Frontier. To 

select a single solution from this set, the one that 

minimizes the distance from the Utopia Point, 

where all objectives have a minimum value (as 

stated in Eq. 9) [30] , is chosen. 

Fig. 1. Operating dynamic task allocation workflow 
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𝒅𝒖𝒕 = √(
𝒎𝒔−𝒎𝒔∗

𝒎𝒔𝒎𝒂𝒙−𝒎𝒔∗)
𝟐

+ (
𝑬−𝑬∗

𝑬𝒎𝒂𝒙−𝑬∗)
𝟐

        (8) 

 

IV.DYNAMIC RESCHEDULING 

The goal of this dynamic task allocation is to 

achieve a balance between workload and wellness 

while minimizing energy expenditure and 

maximizing throughput. By allocating tasks 

dynamically, it is possible to respond quickly to 

changes in the environment or workload, adapt to 

new requirements, and achieve better overall 

performance compared to static task allocation 

approaches.  

Indeed, it is required to real-time track the 

operator’s position and task time since it influences 

directly the makespan and indirectly, the energy 

expenditure, as shown in Fig.1.  

Here, the assumptions made were that the operator 

follows the imposed scheduling, derived as input 

from the static task allocation described in Section 

III, and each task is assigned to a specific position 

in the workspace. These allow measuring exactly 

the start time and the end time of each task, by 

monitoring the operator position change. 

The system operates by taking a static task 

allocation as input, which refers to the initial 

assignment of tasks to the available resources. As 

soon as the operator begins his/her task, the system 

starts measuring the time he/she is taking to 

complete it. Once the task is finished, the system 

compares the execution time with the rated one to 

evaluate the efficiency and compliance with the 

established standard times. 

At this point, two scenarios may occur. The first 

scenario is when the actual time taken to complete 

the task exceeds the rated time. In this case, if there 

are still remaining tasks to be performed, a new task 

allocation is required to minimize the makespan 

while disregarding energy consumption. This 

optimization is done in real-time, utilizing a single-

objective approach that focuses on minimizing 

makespan with the remaining tasks. 

The other scenario happens when the standard times 

are respected: in this case, it is possible that the 

operator’s energy expenditure rate 𝐸̇ (i.e., the ratio 

between the energy expenditure required for the 

task and the task time) may exceed the fixed 

threshold  𝐸̇𝑡ℎ = 4.2927
𝑘𝑐𝑎𝑙

𝑚𝑖𝑛
  [31]. The energy 

expenditure rate of each task takes into account also 

the residual energy effects of the previous tasks 

[32], according to the following equation: 

𝑹𝒋(𝝉𝒋) = ∫ 𝑬𝒋 ⋅ 𝒆−𝝁𝝉𝒋
𝝉𝒋

𝟎
     (9) 

where 𝑅𝑗 is the residual fatigue, function of the 

recovery parameter 𝜇, after the task 𝑗 if the recovery 

time 𝜏𝑗 has passed. This recovery time can be both 

a reaction time or an idle time or even a specific 

amount of time purposefully included to give the 

operator the required rest allowance as better 

describer later. Consequently, the accumulated 

energy for the task 𝑗 + 1 has the form in Eq. 10: 

𝑬𝒋+𝟏 = 𝒆𝒋+𝟏,𝟏 + 𝑹𝒋       (10) 

where 𝑒𝑗+1.1 is the energy required to complete the 

task if performed by the operator, as described in 

Section III.B. Finally, the energy expenditure rate is 

evaluated as: 

𝑬̇𝒋+𝟏 =
𝑬𝒋+𝟏

𝒕𝒋+𝟏,𝟏
       (11) 

where 𝑡𝑗+1,1 is the measured time the operator 

required to complete the task. This value is then 

compared with 𝐸̇𝑡ℎ. 

If the threshold is not met, it is necessary to evaluate 

the rest allowance time 𝜏, as before mentioned, to 

let the operator’s energy rate to return to its resting 

value  𝐸̇𝑅 = 1.86
𝑘𝑐𝑎𝑙

𝑚𝑖𝑛
: 

𝝉 =
𝐥𝐧(𝑬̇)−𝐥𝐧 (𝑬̇𝑹)

𝝁
     (12) 

An example of a typical pattern of energy 

accumulation and recovery process is shown in 

Fig. 2. 

Once the operator's rest period is over, the available 

resources are then provided with a new task 

scheduling that is obtained through a 

comprehensive optimization process aimed at 

minimizing the operator's energy expenditure while 

considering the remaining tasks that need to be 

performed. 

Fig. 2. Energy accumulation and recovery 
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The dynamic multi-objective task allocation system 

follows a continuous process that is designed to 

ensure the optimal allocation of tasks while also 

prioritizing the well-being of human operators. This 

process is repeated every time one of the two 

conditions occurs, namely when a task is completed 

or when an operator takes a rest period until all 

remaining tasks are completed. 

By evaluating the real values of the objective 

functions in real-time, the system can accurately 

assess whether the expected values are being 

respected or not. Based on this evaluation, the 

system can then make adjustments to the task 

allocation process to optimize either productivity or 

the operator's wellness, depending on the scenario. 

This ensures that the system can respond promptly 

to any changes that occur during the production 

process, allowing for maximum efficiency and 

operator well-being. In summary, the dynamic 

multi-objective task allocation system is a powerful 

tool that helps create a truly human-centered 

production environment. By continuously 

evaluating and adjusting task allocation in real-time, 

this system optimizes both productivity and 

operator well-being, ultimately leading to a more 

efficient and sustainable production process. 

 

V. CONCLUSIONS 

In recent years, the shift from Industry 4.0 to 

Industry 5.0 has brought significant changes in the 

approach to workplace design, particularly in terms 

of technology integration and human involvement. 

Industry 4.0 was characterized by the automation of 

the production process, with a focus on maximizing 

output and efficiency, often at the expense of human 

involvement. However, as Industry 5.0 becomes 

more relevant, the focus is moving toward putting 

people at the center of the production process.  

One of the key technologies that is helping to 

facilitate this transition is collaborative robots or 

cobots. These robots can work alongside humans, 

thereby improving production efficiency while 

allowing for greater human involvement in the 

production process.  

However, to fully leverage the potential of cobots, 

it is essential to design workspaces that are 

optimized for human comfort and productivity. This 

requires taking into account the needs and 

preferences of both human and robotic resources 

and finding ways to allocate tasks in a way that 

maximizes efficiency while also taking into account 

human well-being. 

One promising approach to achieving this goal is the 

implementation of a dynamic multi-objective task 

allocation system, as presented in this work. This 

method evaluated the well-being of human 

operators and the system productivity, in order to 

dynamically re-allocate tasks to ensure that the 

operator is not fatigued but at the same that the 

productivity is guaranteed.  

This solution represents a significant step towards 

creating truly human-centered production 

environments that prioritize the well-being and 

productivity of human workers. The dynamic multi-

objective task allocation system presented in this 

work is a novel approach that cannot be found in the 

literature. It demonstrates that optimizing task 

allocation based on both human and robotic 

resources' needs and preferences can lead to 

improved productivity and human well-being. 

As limitations, the system complexity can be high 

since it is necessary to gather and analyze a 

significant amount of data; in addition, it is essential 

to validate its effectiveness in real-world industrial 

settings. That’s why, in future development, this 

approach will be applied to real case studies, with 

the analysis of the parameters described, not only in 

the laboratory but also in the industrial field, with 

the aim of testing the benefits that can be introduced 

in the manufacturing scenario.  

In summary, the shift towards Industry 5.0 

highlights the importance of creating human-

centered production environments that prioritize 

both efficiency and well-being. The dynamic multi-

objective task allocation system presented in this 

work is a promising solution that can help achieve 

this goal. By considering both human and robotic 

resources' needs and preferences, this solution can 

improve productivity while ensuring the well-being 

of human workers. 
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