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Abstract: Industrial robots are used in industry by several decades, but now their integration in production lines is 
widely spreading to new applications, above all for processing and assembling activities. Speed and accuracy are 
surely two of the main required characteristics for the robots, but to be competitive in the actual industrial context, 
robot reliability and availability are fundamental. The maximization of asset availability is the main effort of 
maintenance professionals, above all for robots, for which unexpected downtime could generate very high costs due 
to production losses and maintenance interventions. Predictive maintenance is considered a promising solution to 
overcome the typical trade-off between the maximum exploitation of asset useful life (typical of corrective 
maintenance) and the extension of the asset uptime through preventive interventions (time-based maintenance). 
With the support of digitalization tools, such as artificial intelligence, the predictive maintenance (PdM) can use 
several information to evaluate the actual condition of a system, predict its failure conditions and estimate its 
remaining lifetime, minimizing downtime and improving productivity and product quality. In this way, it is possible 
to decrease maintenance costs reducing preventive actions on assets and spare parts in the maintenance warehouse. 
However, the application of PdM has been often limited by some challenges, typically linked to the incomplete 
perception of PdM potential in relation to the expected necessary changes. In this paper, a methodology to 
effectively implement predictive maintenance on robotic production lines is introduced: the elements and the 
activities necessary to apply different phases of a PdM strategy will be identified and compared to some already 
available solutions. The aim of the paper is providing initial and practical guidelines (verified in a company) to 
approach to this new promising maintenance policy, highlighting the requirements for PdM implementation and 
hence reducing the risk to fail for the lack of some unscheduled aspects.  

Keywords: predictive maintenance; robotic lines; downtime reduction; data management.  

1.Introduction 

Among the other pillars of company competitiveness (e.g. 
knowledge and skills, innovation, supply chain 
infrastructure, business dynamism), maintenance has a key 
role. When managed optimally, it contributes to increase 
productivity, customer satisfaction and long-term 
profitability, ensuring efficiency of production systems, 
product quality, reducing operation costs and improving 
workers’ safety (Sanches et al., 2019). Generally, 
maintenance costs make up a large part of the operating 
costs (15-60% of total production costs). However, it was 
assessed that the 33% is not necessary, due to 
mismanagement of its activities, derived from the lack of 
useful data to quantify repair actions (Mobley, 2002).   
Various maintenance policies exist and each company 
applies the most cost-effective one for its operations. The 
corrective maintenance is based on the principle of letting 
the asset work and keeping it in operation for as long as 
possible, until a failure occurs. When the system fails, the 
goal is to intervene and restore the initial operating 
conditions of the equipment as fast as possible, to restart 
the asset and make it work properly. Preventive 
maintenance is carried out on a periodic basis (Fernandes 
et al., 2019). The main objective is to ensure the 
continuous operation of the plant without any sudden 
failures, trying to always maintain the plant in good 
conditions. Therefore, preventive maintenance can lead to 

higher maintenance costs, since acting in a preventive 
manner on a failure means to replace the components 
before the end of their useful life (Ahmad and 
Kamaruddin, 2012; Bianchini et al., 2019). Predictive 
maintenance (PdM) is a meeting point between  
preventive and corrective maintenance. Since continuous 
dismantling and reassembling of components for periodic 
interventions may induce additional failure risks and 
higher costs, PdM aims to avoid unnecessary interventions 
and at the same time minimize failures. PdM is based on 
the assumption that a failure of any system or component 
derives from a continuous increase of defects or 
progressive degradation, which can be quantified by 
measuring some weak signals (e.g. vibration; temperature; 
current; oil viscosity and pressure) through suitable 
instruments (e.g. respectively accelerometers; 
thermocouples; ammeter; viscometer). If a mathematical 
correlation can be established between signal and time, it 
is possible to predict the remaining useful life (RUL) of 
the component (Sakib and Wuest, 2018). This information 
allows the company to schedule maintenance activities, 
through the generation of alarms, reducing the time of 
intervention and the impact on production (Bianchini et 
al., 2018a). To effectively implement a PdM, two 
requirements are necessary: (i) reliable and consistent data 
about assets, and (ii) an algorithm able to analyse a large 
amount of data and create a model. Scientific research has 
made much effort in recent years regarding the 
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development of algorithms based on Artificial Intelligence 
(AI) (Fernandes et al., 2019; Nguyen and Medjaher, 2019; 
Kilic et al., 2012; Abbasi et al., 2018). This process, driven 
by the development of Industry 4.0, has contributed 
significantly to the utilization of AI tools within industrial 
realities (Killeen et al., 2019; Aheleroff et al., 2020; 
Jasiulewicz - Kaczmarek and Gola, 2019). Companies are 
increasingly interested in these topics and want to start 
approaching the utilization of these new tools. 
Unfortunately, they face a common problem: the lack of 
data. Despite the high automation level makes a great 
amount of information available, data are often used to 
manage the production, therefore specific information 
and alarms about the operations of the process (e.g. 
logical controls or strings) are visualized on that operator 
panel, but data that generate these information are not 
acquired and stored. For transferring maintenance 
information, paper-based records and spreadsheets remain 
the most used solutions, determining misunderstanding, 
incomplete information and delays. On the other hand, 
the application of machine learning technologies requires 
a considerable amount of high- quality data to be 
analyzed.  

This aspect becomes fundamental when PdM is applied to 
robotic production lines. In recent years, the level of 
automation within companies has significantly increased. 
In particular, industrial robots are increasingly used within 
large companies because they make it possible to perform 
repetitive, heavy or dangerous operations ensuring a very 
high level of production capacity and flexibility (Syed et 
al., 2020). To increase capabilities, the integration of 
robots requires a series of equipment, devices or sensors 
required for the robots to perform programmed tasks, 
that makes the manufacturing environment more 
complex. More components means more sources of faults 
and failures, influencing some key performance factors of 
a robot (e.g. accuracy, velocity, force, torque) and 
seriously impacting on productivity (Qiao and Weiss, 
2018). To ensure a high level of availability of these 
machines, robots are typically oversized for the 
application they have to perform, thus high reliability 
within industrial contexts is ensured (Valente, 2016). 
Today, to ensure the proper functioning of the robots, 
companies rely on annual maintenance contracts with the 
supplier, which guarantee preventive maintenance actions, 
telephone technical assistance and a guaranteed 
intervention time by a specialized technician. These 
contracts are onerous and involve redundant preventive 
actions but are stipulated due to the lack of internal 
technical know-how and to ensure the continuous 
operation of the machine. PdM is a promising solution to 
reduce redundant interventions and avoid unexpected 
downtime due to a sudden failure. However, this solution 
is complex to implement because robots generally have a 
high level of reliability. For this reason, it is difficult to 
obtain data about several breaks of a robot, making it 
difficult to create a predictive model  (Paes et al., 2014; 
Pinto and Cerquitelli, 2019). Finally, robots are complex 
machines, which depend a lot on the type of tasks they 
perform within a production line, and there are many 
signals that can be acquired and analysed. Some 

researches, aiming at developing a PdM on industrial 
robots, have been conducted in the last years. Some of 
these focus on the determination of the correlation among 
one signal with the degradation of robots, typically 
monitored with the accuracy of robot positioning (Borgi 
et al., 2017; Kwon et al., 2009; Qiao and Weiss, 2018; 
Bittencourt et al., 2012; Sathish et al., 2016). Others aim to 
develop algorithms, based on machine learning, to predict 
robot faults (Eski et al., 2011; Pinto and Cerquitelli, 2019). 
However, all these studies start from a promising 
condition that is the availability of some data to conduct a 
PdM. Having proper data, in the proper format and 
quantity, to be processed for maintenance scheduling is 
fundamental, but it is not obvious for companies. It 
derives that it is not possible to replicate the same 
methodologies defined in previous researches in the 
industrial settings in the short terms. Some preliminary 
activities are necessary to prepare and guide the 
companies for PdM. Moreover, the trends of some data 
with time vary with fault types and it is difficult to 
describe all the faults with a single model (Borgi et al., 
2017). For all these reasons, there are currently no 
established PdM techniques applied to robotic production 
lines in the industrial field.  

In this paper, a methodology to effectively apply PdM to 
robots in industrial production lines is defined. The 
methodology can be applied to each company that wants 
to approach to PdM on robotic systems, starting from the 
typical management of a production plant. The proposed 
approach is consolidated since applied at industrial level. 
Some steps, although simple, are not obvious for 
companies, which require a guide to effectively implement 
a PdM strategy, to avoid the risk to install new 
technologies without the complete exploitation of their 
functionalities. As approach designed to industrial 
applications, the proposed methodology aims to provide 
the elements to demonstrate to plant and maintenance 
managers the benefits of PdM on specific systems (e.g. 
bottlenecks, high investment cost and high productivity 
plants), to finally boost the effective implementation of 
this strategy. The main difference between previous 
studies about the topic is related to the fact that the 
method is not applied to a specific robot (whit specific 
applications and problems), the approach is designed at 
plant level, considering all the robots and their relative 
equipment in the process. Since it is not easy, cost-
effective and even useful to implement PdM on the entire 
plant, the method won’t neglect any step that could 
prevent the successful outcome of PdM policy. Moreover, 
in doing so in the industrial application, some lacking 
aspects emerged, typically not described in literature since 
the common approach is to analyse a single robot for 
which the availability of data is taken for granted.    

2.Methodology 

For the implementation of an effective PdM on robotic 
lines in real industrial settings, a methodology, mainly 
consisting of 4 stages, is proposed. Each stage is further 
composed by several sub-stages, as shown in Figure 1. 
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Figure 1: scheme of the proposed methodology to 
effectively implement PdM on robotic production lines in 

real industrial context 

2.1 Definition of critical systems and components 

The first crucial stage of the methodology to implement 
PdM on robotic production lines in industrial field is the 
identification of critical systems (and its subsystems), 
intended as parts of production lines containing robots 
and other equipment to ensure specific operations in the 
manufacturing process. It means to detect what assets 
have a considerable influence on system reliability, 
allowing the selection of the stations and components on 
which developing a cost-effective PdM policy, allocating 
resources and making efficient and useful actions. This 
stage is fundamental since the proposed methodology is 
defined at plant level for companies that approach to 
PdM. Consequently, since implementing PdM at the entire 
plant is not easy and even cost-effective and useful, 
considering the high number of systems and installed 
robots, plant and maintenance managers must focus their 
efforts (costs, time, human resources) on systems where 
PdM is an effectively promising solution. To determine 
what are the most critical systems in robotic production 
lines, the following activities are necessary. 

(i) Collection and analysis of the historical information about down-
time. This activity requires to collect data and reports 
about past failures in the robotic production line, 
regarding to: the involved systems and the number of 
times that they failed; the generated alarms; the downtime 
duration (preferably sorted by time to find and to solve 
the problem) and the typology of intervention conducted 
to restore the operations.  

(ii) Determining the criticality of the failures. The quantitative 
information collected in the previous analysis are the basis 
to complete the prioritization of the systems and of their 
failures. There are several criteria to assess the criticality of 
a system (Gupta and Mishra, 2018), Table 1 shows some 
of them. Meetings and interviews with managers (both of 
production and maintenance functions) can be used to 

define criteria and evaluate them to assess and prioritize 
the criticality of the systems.   

Table 1: example of criteria to assess criticalities (regarding 

maintenance) of systems in robotic production lines 

Criteria Description 

Total cost Sum of costs of maintenance 
intervention, investment for a new 
component and production loss. 

Dependency 
relations  

Role of the system in the production 
line in relation to other systems: 
leading role, independent or 
dependent. 

Maintainability Complexity of the system; 
necessity/availability of technical 
specification and expertise; ease to 
repair; time for intervention. 

Safety Human; resources (other assets and 
equipment); environment. 

Identification and prioritization of the main failure causes in the 
system. After the determination of the most critical 
system(s), on which it is possible a cost-effective 
application of PdM, a more detailed analysis of the 
components in the system is necessary. It requires to 
identify why the system fails: it means to understand the 
main causes of the plant stops and the components that 
are influenced from them. Information about failure 
causes and their related downtime must be collected in a 
significant time period (e.g. 1 year): for example, they can 
be obtained by the combination of data from PLCs 
(Programmable Logic Controllers) and from maintenance 
reports. The values of the total downtime, generated in 
the referred period from different failure causes, can be 
organized into a Pareto diagram to show the most 
impactful causes. Given the high reliability of industrial 
robots, it is expected that this type of component does 
not fall in the causes that determine the 80% of the 
cumulative downtime of a system (Pareto Analysis 
results). However, faults and failures in the system where 
robots work can impact on the performance of robots, 
which can generate a lower product quality and a robot 
health degradation, until unexpected and expensive 
shutdowns can occur. Consequently, due to the high costs 
required from the installation, the operation and the 
failure of a robot, the implementation of an effective PdM 
on robots is considered in the proposed methodology. 

(iv) Study the current maintenance strategies. The last activity of 
this stage is the study of the procedures used by operators 
to physically detect and solve the maintenance problems. 
Proper interviews with personnel that manage the 
operations and the maintenance of the system and of its 
components allow the collection of other information that 
derive from their experience and expertise, highlighting 
potential aspects to be improved with PdM.   

2.2 Data selection, acquisition and processing 

Since PdM is a data-driven maintenance strategy, the 



XXV Summer School “Francesco Turco” – Industrial Systems Engineering  

 

 

second stage of the methodology is based on the 
selection, the acquisition and the processing of data that 
can be useful to: (i) detect the main causes of system 
failures with sufficient advance to schedule maintenance 
intervention and (ii) monitor the impact of different 
failure events on health of robots (both in the short and 
the medium term). The introduction of automated 
technologies, as industrial robots, requires the exchange of 
a great amount of data to coordinate the work of different 
assets. Some of these data (e.g. cycle time, good and no-
good parts and stop time) are typically acquired and 
processed to evaluate some performance indicators such 
as OEE (Overall Equipment Effectiveness). However, 
there are numerous data that effectively travel in an 
automated production line, but they are not registered 
(some data are typically visualized on operator panel). 
Such data could be useful for the implementation of PdM. 
Moreover, in recent years the development of tools and 
sensors to acquire data from plants has increased 
(Aheleroff et al., 2020). Specific instruments can be used 
to both monitor addition signals recognized as significant 
for component health assessment and/or to carry out 
checks and diagnoses during the operational life of the 
components. Some examples are: sensors for temperature, 
pressure, flow rate; thermography camera and inspection 
windows; vibration analyser; power quality analyser; 
conveyor chain wear monitoring system; current signature 
analyser; ultrasound analyser; oil sampling tools. Acquiring 
all data available in a robotic production line and adding 
instruments to measure consolidated useful data for 
maintenance can result in a significant additional expense, 
relating both the installation of technologies to measure 
and acquire data and the management and the storage of a 
great volume of information. It is always fundamental to 
economically quantify the benefits of a PdM policy, 
comparing the additional costs to implement it to the 
avoided production losses (Wang et al., 2017). An 
effective selection of data to be acquired to apply a PdM 
strategy is a crucial point of the methodology.  

Steps to implement this stage are reported below. 

(i) Analysis of data potentially available in field. In this phase, it 
is necessary to consider all the data that can be derived by 
the technologies already installed in the plant: 

• data that are already extracted – only visualized or 
already stored; 

• data that travel between technological assets but are not 
extracted to be visualized or registered; 

• data that could be extracted from technologies, but, 
being not useful for the process, are not exploited.  

This last case is typical for robots. Despite industrial 
robots can provide hundred typologies of data, they are 
not used (also by robot brand owners).    

(ii) Identification of missing data necessary to maintenance. Having 
a picture of data that can be available in field, it is possible 
to highlight the necessity of monitoring other specific 
parameters that can well detect the main failure causes, 
identified in stage 1. 

These 2 activities allow the selection of the data to be 
monitored since they characterize the state of critical 
components. 

(iii) Installation of the instruments and assets to acquire useful 
signal. Except for data that are already extracted, all the 
other categories of data previously described, require 
additional technologies to be acquired. Depending on the 
layout of the surrounding asset and the characteristics of 
the working environment, the most suitable solutions to 
measure, acquire and store data must be evaluated, always 
considering the economic aspects.  

(iv) Data acquisition. It involves design and implementation 
of a proper procedure to collect data, that means that the 
acquisition method must be consistent with the type of 
associated failure and with the variation of this signal with 
time. For example, it is not suitable to acquire a signal 
once a second if the health of the corresponding 
component progressively degrades after several years. It is 
important that these data are clean and accurate, as their 
quality greatly influences the next steps. Usually all the 
data are stored in a local or cloud database. This phase is 
very important for robots because robots are machines 
that depend a lot on the type of application they perform. 
Understanding how to read and save the operating data of 
a robot allows the creation of a database useful for the 
following analyses and that can communicate with other 
enterprise software. Today, database about robot is 
lacking in most industrial realities. 

(v) Data processing and analysis. Once the data are stored in a 
database, they are ready to be analysed to find useful 
information (e.g. RUL). It is important to act some 
operations, such as applying filters to clean the signals 
from measurement disturbances. These activities allow 
considering only reliable and high-quality data, that 
effectively result linked to certain events. 

2.3 Predictive maintenance algorithms 

The stage 3 of the methodology uses acquired data to 
elaborate useful and significant information to schedule 
maintenance activities, minimizing downtime. It involves 
the elaboration of algorithms able to identify correlations 
between variations of the acquired signals and the 
component state degradation/failure. Learning from data 
related to typical operations and failures, this type of 
algorithms is able to set and then correct alarm levels to 
schedule maintenance interventions. The selection of the 
most suitable machine learning algorithm requires to 
frame the PdM model, that means to define what outputs 
are expected; if data are ‘labelled’ with the asset conditions 
(e.g. label: good; fault); how far in advance a failure must 
be identified; what are the performance targets and the 
risk tolerance. This information is necessary to decide 
what modelling strategy (e.g. regression, classification, 
clustering) and category (e.g. supervised; unsupervised 
etc.) is more appropriate to the application. Numerous 
applications exist and/or are under development aiming 
to define increasingly precise and reliable algorithms based 
on machine learning, able to detect faults and diagnosis 
and/or predict the RUL of a component. A single ML 
algorithm cannot fit all the desired features and a typical 
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trade-off exists between accuracy and interpretability. 
After the selection of the most suitable ML algorithm, it 
must be validated with several tests to compare expected 
and actual behaviour of the model. When results are 
satisfying, the model must be deployed and integrated in 
the system (e.g. cloud, local PC, company server, 
embedded devices or a mixed solutions), properly selected 
for model computation. 

Despite the difficulties related to an effective 
implementation of advanced algorithms, due to the great 
amount of data to be fed before having reliable results, the 
great value of this stage is the provision of a tool that 
systematize the know-how and the experience developed 
in the company. Know-how consists of the practical 
knowledge needed to make specific activities, in this case 
problem recognition and maintenance actions. This 
knowledge is present, in different ways, in people. 
Transferring this expertise in a digital tool allow the 
diffusion of the same knowledge without loss of 
information and the replication in other similar contexts. 

2.4 Visualization of information for maintenance 

The last stage of the methodology consists of the 
development of a proper visualization of maintenance 
information to monitor the real-time conditions and 
generate an immediate understanding of the necessary 
actions to be done. It involves three different levels, that 
can be supported by digital tools: 

1. production level: it requires a proper human-machine 
interface for operators that manage the operations on the 
terminals. Alarms must be clear and effective to rapidly 
identify the generating causes; 

2. maintenance level: tools that exploit virtual, augmented 
or mixed reality can be developed to make it easier and 
more rapid the intervention, providing visual indications 
to repair and replace faulty components; 

3. management level: maintenance information can be 
integrated in the company MES (Manufacturing 
Execution System) to optimize the efficiency of single 
components and of the entire production lines, improve 
the quality of products and support the decision making 
about the replacement of some problematic components 
with more innovative ones.  

3.Industrial case study 

The proposed methodology is currently applied to the 
robotic productive lines of an Italian Company that 
produces household appliances. In the last years, the 
Company has significantly increased the number of 
industrial robots, installed to automate many assembling 
processes. The Company establishes expensive 
maintenance contracts with robot producers to ensure the 
continuous operations of the plants. However, downtime 
occur, in some cases linked also to robots. Since failures 
generate a high productivity loss, the Company showed 
the need to implement more effective maintenance 
strategies, approaching to PdM. A critical system was 
selected by the Company giving greater importance to the 

downstream stations, high-dependent from this system, 
that, if failures, stops the entire production generating 
high costs of production loss. Moreover, the selected 
system responds also to the criterion of complexity since 
it consists of several types of technologies: 7 industrial 
robots (4 models of anthropomorphic robots); rotary 
tables; conveyor belts; automated machines for specific 
mechanical operations. For stage 1, data about failure 
causes and relative downtime have been collected from 
daily production reports, filled manually by operator. As 
expected, the Pareto Analysis showed that robots were 
not one of the main failure causes. However, due to their 
importance in the process productivity, it was decided to 
continue the analysis also on robots. 

Despite the high level of automation, the first 
encountered problem was the availability of data: in fact, 
only process data (cycle time – set and real; production 
and no-goods parts) were stored and alarms were 
visualized on operator panel. It derives that the stage 2 
required great efforts to make data available for PdM. 
Having a great quantity of data is fundamental to create a 
model that describes the behaviour of the asset and 
estimate the RUL of a component with a certain level of 
accuracy. However, a deep analysis of data is still useful to 
understand the values of normal operation of the asset, 
setting alarm levels when the values of the captured 
signals diverge.  All the possible solutions are currently 
under study to address the lack of data from robots. In 
particular, 3 models of anthropomorphic robots (installed 
in the selected system) are analysed. For these, 3 different 
ways to collect data have been identified and for each of 
them advantages and disadvantages are evaluated, as 
shown in Table 2. The goal is to use a solution that is 
suitable for the specific industrial application.  

Table 2: solutions to acquire and collect data from robots 

Solution Advantages Disadvantages 

Robot 
language 

• Replicable programs; 

• No additional 
software required. 

• PLC 
reconfiguration to 
read parameters. 

OPCUA • Standard protocol; 

• Independent of PLC. 

• Limited 
acquisition time. 

External 
sensors 

• Acquisition of 
additional signals, not 
available among robot 
internal variables. 

• Connection with 
non-standard data 
acquisition 
systems. 

1. Robot language. Solution 1 consists of programming 
language of robots to read robotic system parameters via 
PLC: each parameter must be indicated in the robot 
program. If the robot is already installed and operative in 
the asset, it is necessary to modify the operating program 
of the robot and the PLC must be configured to allow the 
reading of the robot parameters. 

2. OPCUA. Solution 2 consists of the installation of a 
software on the robot controller, enabling the robot 
controller to industrial communication via OPCUA 



XXV Summer School “Francesco Turco” – Industrial Systems Engineering  

 

 

protocol (Cavalieri and Chiacchio, 2013). In this way, a 
direct communication with the robot is enabled without 
having to go through the PLC. Since the minimum data 
acquisition sample time is 100ms, this choice is not 
suitable for high-dynamic applications. 

3. External sensors. Solution 3 consists of the installation of 
sensors outside the robot to measure specific values, such 
as absorbed current, vibration, temperature. The 
acquisition system needs to be analysed since it depends 
also on the system used to read and save data. This choice 
entails very high costs due to the instrumentation to be 
installed on the robots. 

Considering the industrial context of the case study, data 
acquisition from robot via OPCUA is considered the most 
suitable solution. Acquiring data via OPCUA from robots 
means using a versatile protocol that can also be 
integrated into other IT infrastructures without the use of 
other tools. To perform machine-to-machine 
communication and acquire data via OPCUA from 
industrial robots installed on industrial case study, 3 main 
activities are necessary: 

• installation of an OPCUA server software on robot 
controller that enables the robot to communicate with the 
external environment. In the case study, the OPCUA 
server software developed by robot brand owner was 
selected to be installed in the robot controller. There are 
several releases of the OPCUA server software, which 
vary depending on the firmware installed on the robot 
controller; 

• installation of an OPCUA client software that sends 
service and publishing requests and receive responses. An 
OPCUA client software was already installed on a PC to 
test data communication. In practice, to allow OPCUA 
communication with robots, it’s necessary to connect the 
PC to the same subnet as the robots and, to enable the 
robot OPCUA server features, ethernet must be 
connected to the port of the robot controller; 

• connection between OPCUA client and server, 
implemented through the client. Pathway of the serves, IP 
address of robot controller, port to enable OPCUA 
communication must be set to effectively establish the 
communication. 

When the connection between robot and PC is effectively 
implemented, from the client software it is possible to see 
all the OPCUA variables that can be acquired from the 
server. There are hundreds of variables available in the 
internal system of a robot. The next step will consist of 
the analysis of these variables and understanding which 
ones are effectively needed to conduct PdM on robots. 
This connection system can also be useful to acquire some 
information, not directly related to the PdM, but that 
ensure the company to better manage the robots.  

About stage 3, for the definition of a PdM algorithm, the 
research team is working on an analysis of the state-of-
the-art of available software and tools, considering mainly 
open source tools (e.g. KNIME Software and Python 
coding ). In particular, the available tools will be classified 
in relation to their data manipulation models to ensure the 

reading of datasheets generated by OPCUA software and 
other instruments already installed in the considered 
system. This activity is conducted having in mind the 
features of the Manufacturing Execution System of the 
company to ensure its communication with the new 
algorithm. Otherwise a dedicated system will be necessary.  

Finally, concerning to stage 4, knowledge and expertise 
developed in a previous application of augmented reality 
for automatic packaging machines (Bianchini et al., 2018b) 
will be transferred to prepare maintenance handbooks 
(level 2), providing information for operators, who, 
through wearable devices, are guided in maintenance 
activities when an intervention is required.  

4.Conclusions 

A methodology to approach an effective implementation 
of predictive maintenance on robotic production lines is 
proposed in this paper. The methodology is under 
development in a real industrial system, within an Italian 
Company. The main encountered challenge was related to 
the availability of data to be acquired and stored, that 
required the addition of further technology and specific 
skills on data management. Previous researches often 
starting from this point, where data are already available, 
but it is not obvious in industrial contexts. The benefits in 
the asset management, brought by the implementation of 
this procedure, are numerous: increased asset availability; 
better spare part and maintenance staff management and 
reduction of redundant interventions. All these aspects are 
also related to an economic benefit. In particular, the 
additional costs required to implement a PdM strategy and 
acquire, store, process and visualize maintenance  data and 
information must be compared to the current 
maintenance contracts with robot producer (about 1700 
€/robot per year , which includes annual preventive 
maintenance and guaranteed intervention in 24h in case of 
breakdowns), which do not completely avoid plant 
downtime , therefore it is not possible to plan 
maintenance interventions in advance with negative 
consequences on production losses costs. The 
methodology mainly aims to get in line all the activities 
that guide a company to shift to a PdM, trying to 
understand where and how focus the efforts. All the 
described activities require a strong involvement of 
human resources (operators, plant and maintenance 
managers) and, to make the methodology effective, it is 
necessary to implement a suitable staff training which 
combines different disciplines (equipment 
implementation; ITC; data management). Since the 
approach starts from the basis, the methodology can be 
easily replicated both in other critical systems in the same 
company and in other industrial contexts where robotic 
production lines are widely implemented.  
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