Industrial applicability of Electric Signature Analysis as a diagnostic tool for Condition Based Maintenance: a case study
Introduction

Needs

- Competitiveness
- Efficiency
- Quality

% dependency

Years

electrical

mechanical

ESA
(Electric Signature Analysis)

FAIL AND FIX

PREDICT AND PREVENT

Monitoring Technique
Load and speed variations in electro-mechanical systems generally produce correlated variations in current and voltage

- The resulting time and frequency signatures reflect loads, stresses, and wear throughout the system and allow an extensive range of mechanical diagnostic and prognostic information to be obtained from a single sensor attached to an electrical line.

In electric motors, also mechanical problems generally produce variations in current and voltage

- ESA uses the line current and voltage to uncover information on both the electrical and mechanical health of the equipment.

Electric signals (current and voltage) are already monitored in a machine.

- The complexity is moved from hardware level to software one.
ESA is the procedure of capturing the equipment’s supply signals (current and/or voltage) and analysing them to detect malfunctions (not only electrical ones) or incipient faults.

Characteristics

- Requires only access to electric supply lines (already available)
- Diagnostic and prognostic analyses without operate inside the tested equipment (no stoppage, non – intrusive, …)
- Does not require any specific sensor for *data acquisition*
- Develop very cheap diagnostics and prognostics systems.
Case Study - methodology

PHASE 0
MAFE Methodology for the Application of Electric Signature

PHASE 1
DATA ACQUISITION

PHASE 2
FAULT DETECTION

PHASE 2
FAULT ISOLATION AND IDENTIFICATION

University of Bergamo - CELS
Research Center on Logistics and After Sales Service
PHASE 0: Application of MAFE

1) Balancing Machine Breakdown

- **Level 1 (machine):** Balancing machine
- **Level 2 (group):**
 - Locking system
 - Spindle
 - Axles movement
- **Level 3 (component):**
 - Axle X
 - Axle Y
 - Axle W
- **Level 4 (sub-component):**
 - Motor
 - Skid
 - Power cable
 - Sledge
 - Driving belt
 - Sensor

2) Application of FMECA

<table>
<thead>
<tr>
<th>Failure mode</th>
<th>Level 3</th>
<th>Level 4</th>
<th>CI</th>
<th>CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor</td>
<td>Intermittent</td>
<td>1</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>2</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Skid</td>
<td>Partially working</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Sledge</td>
<td>Partially working</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Driving belt</td>
<td>Total (1)</td>
<td>4</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Total (2)</td>
<td>3</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>Power Cable</td>
<td>Intermittent</td>
<td>3</td>
<td>7</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Sensor</td>
<td>Total (1)</td>
<td>3</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Total (2)</td>
<td>4</td>
<td>6</td>
<td>24</td>
</tr>
</tbody>
</table>

3) Applicability of Electric Signature Analysis

<table>
<thead>
<tr>
<th>Failure mode</th>
<th>Level 3</th>
<th>Level 4</th>
<th>CI</th>
<th>CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor</td>
<td>Total</td>
<td>12</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Driving belt</td>
<td>Total (1)</td>
<td>24</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total (2)</td>
<td>18</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Power Cable</td>
<td>Intermittent</td>
<td>21</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Sensor</td>
<td>Total (1)</td>
<td>18</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total (2)</td>
<td>24</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
PHASE 1: Data Acquisition

Data Acquisition and Measurement Section

- Line Voltage and Current Signals
- Data Acquisition board (DAQ)
- Analog-to-Digital Conversion board (ADC)
- Virtual Instrument environment

<table>
<thead>
<tr>
<th></th>
<th>Mean values</th>
<th>Kurtosis coeff.</th>
<th>Skewness coeff.</th>
<th>Crest factor</th>
<th>RMS values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data set 1</td>
<td>1.71</td>
<td>19.11</td>
<td>0.19</td>
<td>28.6</td>
<td>0.2526</td>
</tr>
<tr>
<td>Data set 2</td>
<td>18.25</td>
<td>11.86</td>
<td>-0.47</td>
<td>21.1</td>
<td>0.2659</td>
</tr>
<tr>
<td>Data set 3</td>
<td>-4.84</td>
<td>24.18</td>
<td>-0.28</td>
<td>29.5</td>
<td>0.2305</td>
</tr>
<tr>
<td>Data set 4</td>
<td>-1.23</td>
<td>24.48</td>
<td>-0.05</td>
<td>29.1</td>
<td>0.2385</td>
</tr>
<tr>
<td>Control chart intervals</td>
<td>lower limit</td>
<td>lower limit</td>
<td>lower limit</td>
<td>lower limit</td>
<td>lower limit</td>
</tr>
<tr>
<td></td>
<td>-11.84</td>
<td>11.05</td>
<td>-0.58</td>
<td>21.1</td>
<td>0.2234</td>
</tr>
<tr>
<td></td>
<td>upper limit</td>
<td>upper limit</td>
<td>upper limit</td>
<td>upper limit</td>
<td>upper limit</td>
</tr>
<tr>
<td></td>
<td>18.79</td>
<td>28.76</td>
<td>0.28</td>
<td>33.1</td>
<td>0.2703</td>
</tr>
</tbody>
</table>
PHASE 2/3: Fault Detection, Isolation and Identification

Step 2: Fault Detection (Monitoring)

Step 3: Fault Isolation and Identification (diagnostics)
Conclusions

Advantages

- decrease in maintenance costs;
- substantial reduction of inspection activities on the equipment;
- increase in safety and equipment availability
- possibility to plan on time and in an efficient way maintenance actions
- contribution to the development of sustainable process and products (also energy consumption monitoring)

Future Research

- Implementing this technique in a “plug and play” hardware / software architecture
- In quality management, the comparison,
- In energy management
Future Development

L1 – Electric Signature Toolbox

Purpose
A set of software algorithms implementing the electric signature analysis using various techniques

Input
Electric Signature from the field

Output
Quantitative/qualitative indicators of the signature features

L2 – Diagnostics

Purpose
Responsible of executing the diagnostic analysis for defining the health status of the monitored equipment

Input
Quantitative/qualitative indicators of the signature features

Output
Diagnostics valuation

L3 – Prognostics

Purpose
It transforms the diagnostic valuations into a probabilistic forecast of the equipment health status

Input
Diagnostics valuation

Output
Equipment health state (probabilistic approach)

L4 – Maintenance Policy Optimization Toolbox

Purpose
It is in charge to suggest the more convenient maintenance policy considering techno / economical aspects

Input
Equipment health state

Output
Maintenance strategy definition

University of Bergamo - CELS
Research Center on Logistics and After Sales Service
Acknowledgments
This paper grounds on a project funded by Regione Lombardia titled “Sviluppo e applicabilità meccatronica della firma elettrica per innovare la diagnostica predittiva a garanzia dell’efficienza e della sicurezza delle macchine” (Development and mechatronical applicability of electric signature to innovate predictive diagnostics to guarantee efficiency and safety of the machines).